Composite Structures of Steel and Concrete

Beams, Slabs, Columns, and Frames for Buildings

R. P. Johnson

Contents

Pref	асе		х
Sym	nbols, terminology and units		
Cha	pter 1	Introduction	1
1.1	Comp	osite beams and slabs	1
1.2	Comp	osite columns and frames	2
1.3	Design	n philosophy and the Eurocodes	3
	1.3.1	Background	3
	1.3.2	Limit state design philosophy	3 5
		Basis of design, and actions	
		Resistances	5 7
		Combinations of actions	8
		Comments on limit state design philosophy	9
1.4			
1.5	•		
1.6	Metho	ds of analysis and design	14
Cha	pter 2	Shear connection	20
2.1	Introd	uction	20
2.2	Simply-supported beam of rectangular cross-section		
	2.2.1	No shear connection	22
	2.2.2	Full interaction	24
2.3	Uplift		26
2.4	Methods of shear connection		
	2.4.1	Bond	26
	2.4.2	Shear connectors	27
	2.4.3	Shear connection for profiled steel sheeting	29
2.5	•		29
	2.5.1	Stud connectors used with profiled steel sheeting	. 34
2.6	Partia	I interaction	35
2.7	Effect of slip on stresses and deflections		

2.8	Longitu	idinal shear in composite slabs	40
	2.8.1	The $m-k$ or shear-bond test	40
Cha	pter 3	Simply-supported composite slabs and beams	44
3.1	Introd	uction	44
3.2	Examp	ole: layout, materials and loadings	44
3.3	Composite floor slabs		
	3.3.1	Resistance of composite slabs to sagging bending	48
	3.3.2	Resistance of composite slabs to longitudinal shear	52
	3.3.3	Resistance of composite slabs to vertical shear	54
	3.3.4	Punching shear	55
	3.3.5	Bending moments from concentrated point and	
		line loads	56
	3.3.6	Serviceability limit states for composite slabs	58
	3.3.7	Fire resistance	59
		Partial safety factors for fire	60
		Design action effects for fire	60
		Thermal properties of materials	61
		Design methods for resistance to fire	61
		Simple calculation model for unprotected	
		composite slab	62
3.4	Examp	ole: composite slab	64
	3.4.1	Profiled steel sheeting as shuttering	65
	3.4.2	Composite slab – flexure and vertical shear	66
	3.4.3	Composite slab – longitudinal shear	68
	3.4.4	Local effects of point load	70
	3.4.5	Composite slab – serviceability	72
	3.4.6	Composite slab – fire design	73
	3.4.7	Comments on the design of the composite slab	75
3.5		osite beams – sagging bending and vertical shear	75
	3.5.1	Effective cross-section	76
	3.5.2	Classification of steel elements in compression	77
	3.5.3	Resistance to sagging bending	79
		Cross-sections in Class 1 or 2	79
		Cross-sections in Class 3 or 4	85
	3.5.4	Resistance to vertical shear	85
3.6	Comp	osite beams – longitudinal shear	86
	3.6.1	Critical lengths and cross-sections	86
	3.6.2	Ductile and non-ductile connectors	88
	3.6.3	Transverse reinforcement	89
		Design rules for transverse reinforcement in	
		solid slabs	91

		Contents	vii
		Transverse reinforcement in composite slabs	92
	3,6,4	Detailing rules	93
3.7	•	es, deflections and cracking in service	94
5.1	3.7.1	Elastic analysis of composite sections in sagging	71
	5.7.1	bending	96
	3.7.2	The use of limiting span-to-depth ratios	98
3.8	• • • • •	s of shrinkage of concrete and of temperature	99
3.9		ion of composite floor structures	100
2.,	3.9.1	Prediction of fundamental natural frequency	102
	3.9.2	Response of a composite floor to pedestrian traffic	104
3.10	Fire re	esistance of composite beams	105
3.11		ple: simply-supported composite beam	107
	3.11.1	Composite beam – full-interaction flexure and	
		vertical shear	108
	3.11.2	Composite beam – partial shear connection, and	
		transverse reinforcement	111
	3.11.3	Composite beam – deflection and vibration	115
		Deflection	115
		Vibration	118
	3.11.4	Composite beam – fire design	120
Cha	pter 4	Continuous beams and slabs, and beams	
		in frames	122
4.1	Introdu	ction	122
4.2	Hoggin	g moment regions of continuous composite beams	126
	4.2.1	Classification of sections, and resistance to bending	126
		General	126
		Plastic moment of resistance	127
		Elastic moment of resistance	130
	4.2.2	Vertical shear, and moment-shear interaction	132
		Longitudinal shear	133
	4.2.4	Lateral buckling	134
		Elastic critical moment	136
		Buckling moment	139
		Use of bracing	140
	4.2.5	Cracking of concrete	140
		No control of crack width	143
		Control of restraint-induced cracking	143
		Control of load-induced cracking	145
4.3		analysis of continuous beams	146
	4.3.1	General	146
	4.3.2	Elastic analysis	147

	Redistribution of moments in continuous beam	ıs 148	
	Example: redistribution of moments	149	
	Corrections for cracking and yielding	151	
	4.3.3 Rigid-plastic analysis	153	
4.4	· · ·		
4.5	Design strategies for continuous beams	155	
4.6	Example: continuous composite beam	157	
	4.6.1 Data	157	
	4.6.2 Flexure and vertical shear	159	
	4.6.3 Lateral buckling	161	
	4.6.4 Shear connection and transverse reinforcement	164	
	4.6.5 Check on deflections	165	
	4.6.6 Control of cracking	168	
4.7	Continuous composite slabs	169	
Cha	apter 5 Composite columns and frames	170	
5.1	Introduction	170	
5.2	Composite columns	172	
5.3	Beam-to-column joints	173	
	5.3.1 Properties of joints	173	
	5.3.2 Classification of joints	176	
5.4	Design of non-sway composite frames	178	
	5.4.1 Imperfections	178	
	5.4.2 Elastic stiffnesses of members	181	
	5.4.3 Method of global analysis	181	
	5.4.4 First-order global analysis of braced frames	182	
	Actions	182	
	Eccentricity of loading, for columns	183	
	Elastic global analysis	184	
	Rigid-plastic global analysis	184	
	5.4.5 Outline sequence for design of a composite		
	braced frame	185	
5.5		186	
	5.5.1 Data	186	
	5.5.2 Design action effects and load arrangements	187	
5.6	1		
	5.6.1 Introduction	189	
	5.6.2 Fire resistance, and detailing rules	190	
	5.6.3 Properties of column lengths	191	
	Relative slenderness	192	
	5.6.4 Resistance of a cross-section to combined	100	
	compression and uni-axial bending	193	
	5.6.5 Verification of a column length	194	

		Contents	ix
		Design action effects, for uni-axial bending	194
		Bi-axial bending	196
	5.6.6	Transverse and longitudinal shear	196
	5.6.7	•	197
5.7		ple: external column	198
3.1	5.7.1	•	198
			190
	3.1.2	Properties of the cross-section, and y-axis slenderness	199
	5.7.3		199
	3.7.3		202
	571	bending Resistance of the column layeth for miner and	203
	5.7.4	Resistance of the column length, for minor-axis	205
	c 7 5	bending	205
	5.7.5	Checks on shear	207
5.8		ple (continued): internal column	208
5.9	Exam	ple (continued): design for horizontal forces	210
5.10	Example (continued): nominally-pinned joint to		
	extern	al column	213
Арр	endix A	Partial-interaction theory	214
A.1	Theory	for simply-supported beam	214
A.2	Examp	le: partial interaction	217
Refe	rences		220
Inde.	Index		