

## ASSURANCE TECHNOLOGIES PRINCIPLES AND PRACTICES

A Product, Process, and System Safety Perspective
Second Edition

Dev G. Raheja and Michael Allocco



## **CONTENTS**

| PRE   | REFACE  |            |                                                                    |   |  |
|-------|---------|------------|--------------------------------------------------------------------|---|--|
| CHA   | PTER    | PRO        | SURANCE TECHNOLOGIES,<br>DFITS, AND MANAGING<br>FETY-RELATED RISKS | 1 |  |
| 1.1   | Introdu | iction /   | 1                                                                  |   |  |
| 1.2   | Cheape  | er, Better | e, and Faster Products / 2                                         |   |  |
| 1.3   | What I  | s System   | Assurance? / 5                                                     |   |  |
| 1.4   | Key M   | [anageme   | ent Responsibilities / 5                                           |   |  |
|       | 1.4.1   | Integrati  | ion / 5                                                            |   |  |
|       | 1.4.2   | Budget     | Consistent with Objectives / 5                                     |   |  |
|       | 1.4.3   | Managir    | ng Risk / 6                                                        |   |  |
|       |         | 1.4.3.1    | Managing Safety-Related Risk / 6                                   |   |  |
|       |         | 1.4.3.2    | Risk Assessment / 7                                                |   |  |
|       |         | 1.4.3.3    | Risk Types / 7                                                     |   |  |
|       |         | 1.4.3.4    | Risk Terms / 8                                                     |   |  |
|       |         | 1.4.3.5    | Risk Knowledge / 8                                                 |   |  |
| 1.5   | Is Sys  | tem Assu   | rance a Process? / 8                                               |   |  |
| 1.6   | System  | n Assura   | nce Programs / 10                                                  |   |  |
| Refe  | rences  | / 10       |                                                                    |   |  |
| Furtl | ner Rea | ding / 1   | 10                                                                 |   |  |

| CHA   | PTER    | 2 INTRODUCTION TO STATISTICAL CONCEPTS                             | 11 |
|-------|---------|--------------------------------------------------------------------|----|
| 2.1   | Probab  | bilistic Designs / 11                                              |    |
| 2.2   | Probab  | bility Computations for Reliability, Safety, and Maintainability / | 12 |
|       | 2.2.1   | Construction of a Histogram and the Empirical Distribution / 12    |    |
|       | 2.2.2   | Computing Reliability / 14                                         |    |
|       | 2.2.3   | Failure Rate and Hazard Function / 15                              |    |
| 2.3   | Norma   | al Distribution / 16                                               |    |
| 2.4   | Log No  | Iormal Distribution / 22                                           |    |
| 2.5   | Expone  | nential Distribution / 25                                          |    |
| 2.6   | Weibu   | all Distribution / 29                                              |    |
| 2.7   | Data A  | Analysis with Weibull Distribution / 32                            |    |
| 2.8   | Discret | ete Distributions / 36                                             |    |
|       | 2.8.1   | Binomial Distribution / 37                                         |    |
|       | 2.8.2   | Poisson Distribution / 38                                          |    |
| 2.9   | Topics  | s for Student Projects and Theses / 39                             |    |
| Refe  | rences  | / 39                                                               |    |
| Furth | er Read | ding / 40                                                          |    |
| CHA   | PTER    | 3 RELIABILITY ENGINEERING AND SAFETY-RELATED APPLICATIONS          | 41 |
| 3.1   | Reliab  | pility Principles / 41                                             |    |
| 3.2   | Reliab  | oility in the Design Phase / 44                                    |    |
|       | 3.2.1   | Writing Reliability Specifications / 45                            |    |
|       | 3.2.2   | Conducting Design Reviews / 45                                     |    |
|       |         | 3.2.2.1 Preliminary Design Review / 46                             |    |
|       |         | 3.2.2.2 Lessons Learned and Checklists / 47                        |    |
|       | 3.2.3   | Reliability Allocation / 48                                        |    |
|       | 3.2.4   | Reliability Modeling / 49                                          |    |
|       |         | 3.2.4.1 Series Model / 49                                          |    |
|       |         | 3.2.4.2 Parallel Model / 50                                        |    |
|       | 3.2.5   | Reliability Prediction / 51                                        |    |
|       | 3.2.6   | Failure-Mode, Effects, and Criticality Analysis / 54               |    |
|       | 3.2.7   |                                                                    |    |
|       | 3.2.8   | Other Analysis Techniques / 61                                     |    |
|       | 3.2.9   | Design Improvement Approaches / 62                                 |    |
|       |         | 3.2.9.1 Derating / 62                                              |    |
|       |         |                                                                    |    |

| 3.3 | Reliability in the Manufacturing Phase / 65 |                                                                 |     |  |  |
|-----|---------------------------------------------|-----------------------------------------------------------------|-----|--|--|
| 3.4 | Reliab                                      | iability in the Test Phase / 66                                 |     |  |  |
|     | 3.4.1                                       | Reliability Growth Testing / 67                                 |     |  |  |
|     | 3.4.2                                       | Tests for Durability / 70                                       |     |  |  |
|     | 3.4.3                                       | Testing for Low Failure Rates / 75                              |     |  |  |
|     | 3.4.4                                       | Burn-in and Screening / 82                                      |     |  |  |
| 3.5 | Reliab                                      | ility in the Use Phase / 86                                     |     |  |  |
| 3.6 | Reliability and Safety Commonalities / 87   |                                                                 |     |  |  |
|     | 3.6.1                                       | Common System Objective / 87                                    |     |  |  |
|     | 3.6.2                                       | Unreliability and Hazards / 87                                  |     |  |  |
|     | 3.6.3                                       | Complex Risks / 88                                              |     |  |  |
|     | 3.6.4                                       | Potential System Accidents / 88                                 |     |  |  |
|     | 3.6.5                                       | Software Reliability and Safety / 89                            |     |  |  |
|     | 3.6.6                                       | Reliability and Safety Trade-offs / 89                          |     |  |  |
|     | 3.6.7                                       | Reliability and Safety Misconceptions / 89                      |     |  |  |
|     |                                             | 3.6.7.1 Redundancy / 90                                         |     |  |  |
|     |                                             | 3.6.7.2 Monitoring / 91                                         |     |  |  |
|     |                                             | 3.6.7.3 Concepts of Probability / 91                            |     |  |  |
|     |                                             | 3.6.7.4 Familiarization to Automation / 92                      |     |  |  |
|     |                                             | 3.6.7.5 Reliable Software and Safety Considerations / 93        |     |  |  |
|     |                                             | 3.6.7.6 Reliable Analyses and Safety Applications / 95          |     |  |  |
| 3.7 | Topic                                       | s for Student Projects and Theses / 100                         |     |  |  |
|     | erences                                     |                                                                 |     |  |  |
|     |                                             | ading / 102                                                     |     |  |  |
|     |                                             |                                                                 |     |  |  |
| CH  | APTEF                                       | R 4 MAINTAINABILITY ENGINEERING AND SAFETY-RELATED APPLICATIONS | 103 |  |  |
| 4.1 | Maint                                       | ainability Engineering Principles / 103                         |     |  |  |
| 4.2 |                                             | tainability during the Design Phase / 106                       |     |  |  |
|     | 4.2.1                                       | Developing Maintainability Specifications / 106                 |     |  |  |
|     | 4.2.2                                       | Design Review for Maintainability / 107                         |     |  |  |
|     | 4.2.3                                       | Maintainability Analysis / 109                                  |     |  |  |
|     | 4.2.4                                       | FMECA for Maintainability / 109                                 |     |  |  |
|     | 4.2.5                                       | Maintainability Prediction / 110                                |     |  |  |
|     | 4.2.6                                       | Life-Cycle Cost Analysis / 111                                  |     |  |  |
|     | 4.2.7                                       | Design for Accessability / 114                                  |     |  |  |
|     | 4.2.8                                       | Design for Ease of Maintenance / 114                            |     |  |  |
|     | 4.2.9                                       | Design for MM of Testing / 118                                  |     |  |  |

| 4.3  | Mainta | ainability in the Manufacturing Stage / 122                                                |    |
|------|--------|--------------------------------------------------------------------------------------------|----|
|      | 4.3.1  | Maintainability for Existing Equipment / 122                                               |    |
|      | 4.3.2  | Maintainability for New Equipment / 124                                                    |    |
| 4.4  | Mainta | ninability in the Test Stage / 126                                                         |    |
|      | 4.4.1  | Prerequisites for Maintainability Tests / 127                                              |    |
|      | 4.4.2  | Tests for Inherent Equipment Downtime / 127                                                |    |
|      | 4.4.3  | Tests for Human Variations / 127                                                           |    |
|      | 4.4.4  | Maintenance Level Tests / 127                                                              |    |
| 4.5  | Mainta | ainability in the Use Stage / 128                                                          |    |
|      | 4.5.1  | Prediction and Reduction of Limited-Life Items / 128                                       |    |
|      | 4.5.2  | Monitoring and Predicting Operational Availability / 129                                   |    |
|      | 4.5.3  | Minimizing Support Costs / 132                                                             |    |
| 4.6  | Mainta | ainability and System Safety / 132                                                         |    |
|      | 4.6.1  | Remote Maintenance Safety and Security / 132                                               |    |
|      | 4.6.2  | System Health Monitoring and Maintenance / 134                                             |    |
|      | 4.6.3  | Using Models to Develop Maintenance Diagnostics and Monitoring / 134                       |    |
|      |        | 4.6.3.1 Stress-Strength Analysis / 134                                                     |    |
|      |        | 4.6.3.2 Safety Factor and Safety Margin Variability / 135                                  |    |
|      |        | 4.6.3.3 Safety Margin and a Hazard Control / 135                                           |    |
|      |        | 4.6.3.4 Integration Considerations Between Safety-Related Models and Hazard Analysis / 136 |    |
|      |        | 4.6.3.5 Real World Verification / 137                                                      |    |
|      | 4.6.4  | Hazard Analysis in Support of Maintenance / 137                                            |    |
| 4.7  |        | for Student Projects and Theses / 144                                                      |    |
| Refe | rences | - · · · · · · · · · · · · · · · · · · ·                                                    |    |
|      |        | ding / 145                                                                                 |    |
| CHA  | PTER   | 5 SYSTEM SAFETY ENGINEERING                                                                | 14 |
| 5.1  | Systen | n Safety Principles / 147                                                                  |    |
|      | 5.1.1  | System Safety Process / 150                                                                |    |
|      | 5.1.2  | Risk Assessment / 150                                                                      |    |
|      | 5.1.3  | Technical Risk Analysis / 150                                                              |    |
|      | 5.1.4  | Residual Risk / 153                                                                        |    |
|      | 5.1.5  | Emergency Preparedness / 153                                                               |    |
| 5.2  | Systen | n Safety in Design / 153                                                                   |    |
|      | 5.2.1  | Criteria for a Safe Design / 154                                                           |    |
|      | 5.2.2  | Safety Engineering Tasks / 156                                                             |    |
|      | 5.2.3  | Preliminary Hazard Analysis / 156                                                          |    |

5.2.4 Subsystem Hazard Analysis / 161

|     | 5.2.5  | Fault-Tree Analysis / 163                                             |
|-----|--------|-----------------------------------------------------------------------|
|     | 5.2.6  | Cut Set Analysis / 167                                                |
|     | 5.2.7  | Failure-Mode, Effects, and Criticality Analysis / 169                 |
|     | 5.2.8  | Maintenance Engineering Safety Analysis / 169                         |
|     | 5.2.9  | Event Trees / 170                                                     |
|     | 5.2.10 | Operating and Support Hazard Analysis / 172                           |
|     | 5.2.11 | Occupational Health Hazard Assessment / 174                           |
|     | 5.2.12 | Sneak Circuit Analysis / 174                                          |
|     | 5.2.13 | System Hazard Analysis / 176                                          |
| 5.3 | System | Safety in Manufacturing / 176                                         |
|     | 5.3.1  | Determining Safety-Critical Items / 176                               |
|     | 5.3.2  | Manufacturing Controls for Safety / 176                               |
| 5.4 | System | Safety in the Test Stage / 178                                        |
|     | 5.4.1  | Testing Principles / 178                                              |
|     | 5.4.2  | Prerequisites for Developing Appropriate                              |
|     |        | Tests / 179                                                           |
|     | 5.4.3  | Product Qualification Tests / 180                                     |
|     | 5.4.4  | Production Tests / 180                                                |
|     | 5.4.5  | Tests for Human-Related Errors / 181                                  |
|     | 5.4.6  | Testing the Safety of Design Modifications / 182                      |
|     | 5.4.7  | Testing Procedures / 182                                              |
|     | 5.4.8  | Analyzing Test Data—The Right Way / 182                               |
|     | 5.4.9  | How Much Testing Is Enough? / 183                                     |
| 5.5 | Systen | n Safety in the Use Stage / 183                                       |
|     | 5.5.1  | Closed-Loop Hazard Management                                         |
|     |        | (Hazard Tracking and Risk Resolution) / 183                           |
|     |        | Integrity of the Procedures / 183                                     |
|     | 5.5.3  | Control of Changes / 184                                              |
|     |        | 5.5.3.1 Changes in Product Design / 184                               |
|     |        | 5.5.3.2 Changes in Manufacturing Process / 184                        |
|     |        | Accident/Incident Investigation / 184                                 |
| 5.6 | Analy  | zing System Hazards and Risks / 185                                   |
|     | 5.6.1  | SDHA Process Development / 186                                        |
|     | 5.6.2  | Designing Accidents / 187                                             |
|     |        | 5.6.2.1 SDHA-Related Concept / 187                                    |
|     |        | 5.6.2.2 Adverse Event Model / 187                                     |
|     |        | 5.6.2.3 Life Cycle of a System Accident / 188                         |
|     |        | 5.6.2.4 Potential Pitfalls in Logic Development / 189                 |
|     |        | 5.6.2.5 Determining Hazards (Unsafe Acts are Unsafe Conditions) / 190 |

| CONTENTS |
|----------|
|          |
|          |

|       |        | 5.6.2.6 Tabular Worksheet / 190                                          |
|-------|--------|--------------------------------------------------------------------------|
|       |        | 5.6.2.7 Deductive and Inductive Approaches Toward                        |
| 5.7   | Hazar  | Scenario Development / 190 d Identification / 191                        |
| 3.7   |        | Scenario Themes / 191                                                    |
|       |        | Primary Hazards / 192                                                    |
|       |        | Initiators / 193                                                         |
|       |        | Contributors / 194                                                       |
|       |        | Overlapping Hazards / 195                                                |
| 5 8   |        | s for Student Projects and Theses / 195                                  |
|       | rences |                                                                          |
|       |        | ding / 197                                                               |
| 1 010 |        |                                                                          |
| CHA   | APTER  | 6 QUALITY ASSURANCE ENGINEERING AND PREVENTING LATENT SAFETY DEFECTS 199 |
| 6.1   | Qualit | y Assurance Principles / 199                                             |
| 6.2   |        | y Assurance in the Design Phase / 201                                    |
|       |        | Product Design Review for Quality / 202                                  |
|       |        | 6.2.1.1 Quality Function Deployment / 203                                |
|       |        | 6.2.1.2 Benchmarking / 204                                               |
|       |        | 6.2.1.3 Quality Loss Function / 204                                      |
|       | 6.2.2  | Process Design Review for Quality and Yield / 206                        |
|       |        | 6.2.2.1 Capital Equipment Analysis / 207                                 |
|       | 6.2.3  | Design Optimization for Robustness / 209                                 |
|       |        | 6.2.3.1 Shainin Approach / 210                                           |
|       |        | 6.2.3.2 Taguchi Approach / 211                                           |
|       | 6.2.4  | Process FMECA / 214                                                      |
|       | 6.2.5  | Quality Assurance Plans for Procurement and                              |
|       |        | Process Control in the Design Phase / 217                                |
|       |        | 6.2.5.1 Equipment Procurement Plans / 217                                |
|       |        | 6.2.5.2 Process Control Plans / 217                                      |
|       |        | 6.2.5.3 Component Procurement Quality Plans / 218                        |
| 6.3   |        | y Assurance in the Manufacturing Phase / 220                             |
|       | 6.3.1  | Evaluation of Pilot Run / 220                                            |
|       | 6.3.2  | Process Control / 221                                                    |
|       |        | 6.3.2.1 Identifying Causes of Variation / 222                            |
|       |        | 6.3.2.2 Verifying the Influence of Causes / 224                          |
|       |        | 6.3.2.3 Statistical Process Control / 226                                |
|       |        | 6.3.2.4 Control Charts for Variables / 228                               |
|       | 6.3.3  | PPM Control for World-Class Quality / 228                                |

|     | 6.3.4  | Working with Suppliers / 230                                        |     |
|-----|--------|---------------------------------------------------------------------|-----|
|     |        | PPM Assessment / 231                                                |     |
| 6.4 |        | y Assurance in the Test Phase / 232                                 |     |
|     | 6.4.1  |                                                                     |     |
|     | 6.4.2  | Industry Standards / 233                                            |     |
| 6.5 |        | y Assurance in the Use Phase / 233                                  |     |
| 6.6 | -      | s for Student Projects and Theses / 234                             |     |
| -   | rences | / 234                                                               |     |
|     |        | ding / 235                                                          |     |
| CHA | APTER  | 7 LOGISTICS SUPPORT ENGINEERING AND<br>SYSTEM SAFETY CONSIDERATIONS | 237 |
| 7.1 | Logist | tics Support Principles / 237                                       |     |
| 7.2 | _      | tics Engineering During the Design Phase / 238                      |     |
|     | 7.2.1  | Logistics Specifications for Existing Products / 238                |     |
|     | 7.2.2  | Logistics Specifications for New Products / 240                     |     |
|     | 7.2.3  | Design Reviews / 241                                                |     |
|     | 7.2.4  | Logistics Support Analysis / 241                                    |     |
|     | 7.2.5  | FMECA for Logistics Support Analysis / 242                          |     |
|     | 7.2.6  | Time-Line Analysis / 244                                            |     |
|     | 7.2.7  | Level-of-Repair Analysis / 245                                      |     |
|     | 7.2.8  | Logistics Support Analysis Documentation / 245                      |     |
| 7.3 | Logis  | tics Engineering During the Manufacturing Phase / 245               |     |
| 7.4 | Logis  | tics Engineering During the Test Phase / 246                        |     |
|     | 7.4.1  | Tests for R&M Characteristics / 246                                 |     |
|     | 7.4.2  | Tests of Operating Procedures / 246                                 |     |
|     | 7.4.3  | Tests for Emergency Preparedness / 246                              |     |
| 7.5 | Logis  | tics Engineering in the Use Phase / 246                             |     |
|     | 7.5.1  | Reliability-Centered Maintenance / 247                              |     |
|     |        | 7.5.1.1 RCM Analysis Planning / 247                                 |     |
|     |        | 7.5.1.2 RCM Process / 247                                           |     |
|     |        | 7.5.1.3 RCM Strategies / 247                                        |     |
|     | 7.5.2  | Measuring the Effectiveness of Logistics Engineering / 250          |     |
| 7.6 | Logis  | stics Support Engineering and System Safety / 251                   |     |
|     | 7.6.1  | Product, General, and Professional Liability / 251                  |     |
|     | 7.6.2  |                                                                     |     |
|     | 7.6.3  |                                                                     |     |
|     |        | 7.6.3.1 Production and Deployment Considerations / 252              |     |
|     |        | 7.6.3.2 Process Runs / 253                                          |     |
|     |        | 7.6.3.3 Production Inspection / 253                                 |     |

|     |        | 7.6.3.6 Construction, Installation, Assembly, Testing, and Initial Operation / 256 |       |
|-----|--------|------------------------------------------------------------------------------------|-------|
|     |        | 7.6.3.7 Operations, Maintenance, and Upkeep / 256                                  |       |
|     |        | 7.6.3.8 Retirement and Disposal / 258                                              |       |
| 7.7 | Topics | for Student Projects and Theses / 259                                              |       |
|     | rences | · · · · · · · · · · · · · · · · · · ·                                              |       |
|     |        | ding / 260                                                                         |       |
|     |        |                                                                                    |       |
| CHA | APTER  | 8 HUMAN FACTORS ENGINEERING AND<br>SYSTEM SAFETY CONSIDERATIONS                    | 261   |
| 8.1 | Humai  | n Engineering Principles / 261                                                     |       |
| 8.2 | Huma   | n Factors in the Design Phase / 262                                                |       |
|     | 8.2.1  | Use of Checklists and Standards in Specifications / 262                            |       |
|     | 8.2.2  | Design Reviews for Human Interfaces / 265                                          |       |
|     | 8.2.3  | Using Lessons Learned / 265                                                        |       |
|     | 8.2.4  | Review of Hazard Analyses / 266                                                    |       |
| 8.3 | Huma   | n Factors in the Manufacturing Phase / 268                                         |       |
|     | 8.3.1  | Types of Manufacturing Errors and Controls / 268                                   |       |
|     |        | 8.3.1.1 Errors of Illusion / 268                                                   |       |
|     |        | 8.3.1.2 Errors of Vision / 269                                                     |       |
|     |        | 8.3.1.3 Errors of Insufficient Knowledge / 269                                     |       |
|     |        | 8.3.1.4 Errors of Engineering Oversight / 269                                      |       |
|     | 8.3.2  | Preventing Inspection Errors / 269                                                 |       |
| 8.4 | Huma   | in Factors in the Test Phase / 270                                                 |       |
|     | 8.4.1  | Tests for Stereotype Behavior / 270                                                |       |
|     | 8.4.2  | Tests for Emergency Preparedness / 271                                             |       |
|     | 8.4.3  | Tests for Amelioration / 273                                                       |       |
|     | 8.4.4  | Tests for the Human-Machine Interface / 273                                        |       |
| 8.5 |        | nn Factors in the Use Phase / 274                                                  |       |
| 8.6 |        | ional Considerations Involving Human Factors and System Safety                     | / 274 |
|     |        | Human Variability / 274                                                            |       |
|     | 8.6.2  | Human Engineering Complexities / 275                                               |       |
|     |        | The Human Machine / 275                                                            |       |
|     | 8.6.4  | Human Behavior / 275                                                               |       |
|     |        | Human Motivation / 275                                                             |       |
|     | 8.6.6  | Motivation and Safety Culture / 276                                                |       |
|     | 8.6.7  | Human Error / 276                                                                  |       |

7.6.3.4 Quality Control and Data Analysis / 2547.6.3.5 Storage, Transportation, and Handling / 255

| 8.7  | Real Time and Latent Errors / 276                            |                                                          |    |  |  |
|------|--------------------------------------------------------------|----------------------------------------------------------|----|--|--|
| 8.8  | Analyses in Support of Human Factors and System Safety / 277 |                                                          |    |  |  |
| _    | 8.8.1                                                        | Human Interface Analysis / 277                           |    |  |  |
|      | 8.8.2                                                        | Link Analysis / 277                                      |    |  |  |
|      | 8.8.3                                                        | Critical Incident Technique (CIT) / 279                  |    |  |  |
|      | 8.8.4                                                        | Behavior Sampling / 279                                  |    |  |  |
|      | 8.8.5                                                        | Procedure Analysis / 281                                 |    |  |  |
|      | 8.8.6                                                        | Life Support/Life Safety Analysis / 281                  |    |  |  |
|      | 8.8.7                                                        | Job Safety Analysis / 282                                |    |  |  |
|      | 8.8.8                                                        | Human Reliability / 282                                  |    |  |  |
|      | 8.8.9                                                        | Technique for Error Rate Prediction (THERP) / 283        |    |  |  |
|      | 8.8.10                                                       | A Technique for Human Event Analysis (ATHEANA) / 284     |    |  |  |
|      | 8.8.11                                                       | Human Error Criticality Analysis (HECA) / 285            |    |  |  |
|      | 8.8.12                                                       | Workload Assessment / 286                                |    |  |  |
| 8.9  | Topics                                                       | for Student Projects and Theses / 286                    |    |  |  |
| Refe | rences ,                                                     | / 287                                                    |    |  |  |
| Furt | her Read                                                     | ling / 288                                               |    |  |  |
| CHA  | APTER                                                        | 9 SOFTWARE PERFORMANCE ASSURANCE 28                      | 39 |  |  |
| 9.1  | Softwa                                                       | re Performance Principles / 289                          |    |  |  |
|      | 9.1.1                                                        | Software Quality / 290                                   |    |  |  |
|      | 9.1.2                                                        | Software Reliability / 291                               |    |  |  |
|      | 9.1.3                                                        | Software System Safety / 293                             |    |  |  |
|      | 9.1.4                                                        | Software Maintainability / 294                           |    |  |  |
|      | 9.1.5                                                        | Software Logistics Engineering / 294                     |    |  |  |
|      | 9.1.6                                                        | Some Important Definitions / 295                         |    |  |  |
| 9.2  | Softwa                                                       | are Performance in the Design Phase / 297                |    |  |  |
|      | 9.2.1                                                        | Software Quality Assurance in Design / 297               |    |  |  |
|      | 9.2.2                                                        | Software Reliability in Design / 298                     |    |  |  |
|      |                                                              | 9.2.2.1 Software Design Techniques for Reliability / 299 |    |  |  |
|      |                                                              | 9.2.2.2 Preventing Specification and Design Errors / 300 |    |  |  |
|      | 9.2.3                                                        | Software Maintainability in Design / 300                 |    |  |  |
|      | 9.2.4                                                        | Software System Safety in Design / 301                   |    |  |  |
|      |                                                              | 9.2.4.1 Software Safety Risk Assessment / 302            |    |  |  |
|      |                                                              | 9.2.4.2 Software Safety Tools / 303                      |    |  |  |
|      | 9.2.5                                                        | Software Logistics Engineering / 305                     |    |  |  |
|      | 9.2.6                                                        | Software System Failure-Modes and Effects Analysis / 306 |    |  |  |
|      |                                                              | 9.2.6.1 The Objective / 306                              |    |  |  |
|      |                                                              | 9.2.6.2 The Methodology / 306                            |    |  |  |

|      |         | 9.2.6.3 Demonstration of Methodology / 307           |     |
|------|---------|------------------------------------------------------|-----|
|      |         | 9.2.6.4 Software - Hardware Interface Control / 309  |     |
|      |         | 9.2.6.5 Other Uses of SSFMEA / 309                   |     |
|      |         | 9.2.6.6 Implementing a SSFMEA Program / 310          |     |
|      | 9.2.7   | Software Performance Specification / 310             |     |
|      |         | Software Design Review Checklist / 310               |     |
| 9.3  | Softwa  | are Requirements During Coding and Integration / 323 |     |
|      | 9.3.1   | Coding Errors / 323                                  |     |
|      | 9.3.2   | Quantifying Software Errors / 324                    |     |
|      | 9.3.3   | Coding Error Prevention / 326                        |     |
| 9.4  | Softw   | are Testing / 328                                    |     |
|      | 9.4.1   | Testing for Quality / 328                            |     |
|      | 9.4.2   | Testing for Reliability / 329                        |     |
|      | 9.4.3   | Testing for Maintainability / 329                    |     |
|      | 9.4.4   | Testing for Software Safety / 329                    |     |
|      | 9.4.5   | Testing for Overall Qualification / 330              |     |
| 9.5  | Softw   | are Performance in the Use Stage / 331               |     |
| 9.6  | Topic   | s for Student Projects and Theses / 332              |     |
| Refe | erences | / 332                                                |     |
| CH   | APTEF   | R 10 SYSTEM EFFECTIVENESS                            | 335 |
| 10.1 | Intro   | oduction / 335                                       |     |
| 10.2 |         | em Effectiveness Principles / 336                    |     |
| 10.3 | •       | lementing the Programs / 339                         |     |
| 10.4 |         | aging by Life-Cycle Costs / 341                      |     |
| 10.5 |         | rem Effectiveness Model / 343                        |     |
| 10.6 | •       | hors' Recommendations / 343                          |     |
| 10.  |         | tem Risk and Effects on System Effectiveness / 344   |     |
|      |         | 7.1 System Accidents / 345                           |     |
|      |         | 7.2 Complex System Risks / 345                       |     |
|      | 10.7    | 7.3 Synergistic Risks / 345                          |     |
|      | 10.7    | 7.4 Controlling Risks with Effective System Safety   |     |
|      |         | Requirements and Standards / 346                     |     |
|      | 10.7    |                                                      |     |
|      |         | 10.7.5.1 Standards and Federal Codes / 348           |     |
|      |         | 10.7.5.2 General System Safety Requirements / 348    |     |
|      |         | 10.7.5.3 Derived Requirements / 349                  |     |
|      |         | 10.7.5.4 Requirements Testing / 349                  |     |
|      |         | 10.7.5.5 Requirements Development / 350              |     |

|        |           | 10.7.5.6      | Requirements Compliance / 350                                |     |
|--------|-----------|---------------|--------------------------------------------------------------|-----|
|        |           | 10.7.5.7      | Requirements Revision / 350                                  |     |
|        |           | 10.7.5.8      | Requirements Traceability / 351                              |     |
|        |           | 10.7.5.9      | Requirements Documentation / 351                             |     |
|        |           | 10.7.5.10     | Requirements Language / 351                                  |     |
|        |           | 10.7.5.11     | Redundant Requirements / 351                                 |     |
|        |           |               | System Effectiveness Models / 352                            |     |
|        |           |               | cators of System Effectiveness or Success / 352              |     |
| 10.8   | Topics f  | for Student   | Projects and Theses / 353                                    |     |
| Refere | ences /   | 353           |                                                              |     |
| Furthe | er Readin | ig / 354      |                                                              |     |
| CHAI   | PTER 1    | 1 MANA        | GING SAFETY-RELATED RISKS                                    | 355 |
| 11.1   | Establis  | h the Appro   | opriate Safety Program to Manage Risk / 355                  |     |
|        | 11.1.1    | Specific Sa   | afety Programs / 355                                         |     |
| 11.2   | Progran   | ns to Addre   | ss Product, Process, and System Safety / 356                 |     |
|        | 11.2.1    | Product Sa    | afety Management / 356                                       |     |
|        | 11.2.2    | Process Sa    | afety Management / 358                                       |     |
|        | 11.2.3    | System Sa     | fety Management / 362                                        |     |
| 11.3   | Resourc   | e Allocatio   | on and Cost Analysis in Safety Management / 368              |     |
|        | 11.3.1    | Cost of Lo    | osses Versus Cost of Control / 369                           |     |
| 11.4   | Topics    | for Student   | Projects and Theses / 369                                    |     |
| Refer  | ences /   | 370           |                                                              |     |
| Furth  | er Readit | ng / 370      |                                                              |     |
| CHA    | PTER 1    | ANAL          | STICAL CONCEPTS, LOSS<br>YSES, AND SAFETY-RELATED<br>CATIONS | 373 |
| 12.1   |           |               | ns and Statistical Applications afety / 373                  |     |
| 12.2   | Statistic | cal Analysis  | s Techniques Used Within Safety Analysis / 373               |     |
| 12.3   | Using S   | Statistical C | ontrol in Decision-Making for Safety / 376                   |     |
| 12.4   | Behavi    | or Sampling   | g / 379                                                      |     |
| 12.5   | Calcula   | iting Hazard  | dous Exposures to the Human System / 380                     |     |
| 12.6   | Topics    | for Student   | Projects and Theses / 383                                    |     |
| Refer  | ences /   | 384           |                                                              |     |
| Furth  | er Readi  | ng / 384      |                                                              |     |
|        |           |               |                                                              |     |

| CHAP  | TER 1                                                                    | MODELS, CONCEPTS, AND EXAMPLES:<br>APPLYING SCENARIO-DRIVEN<br>HAZARD ANALYSIS | 385 |  |  |
|-------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----|--|--|
| 13.1  | Adverse Sequences / 385                                                  |                                                                                |     |  |  |
|       | 13.1.1                                                                   | Scenarios Within Safety Analysis / 385                                         |     |  |  |
|       | 13.1.2                                                                   | Modeling Within Safety Analysis / 385                                          |     |  |  |
|       |                                                                          | 13.1.2.1 Overviews and Models / 386                                            |     |  |  |
|       |                                                                          | 13.1.2.2 Visualization / 387                                                   |     |  |  |
|       |                                                                          | 13.1.2.3 Scenarios, Reality, and Benefits / 387                                |     |  |  |
|       | 13.1.3                                                                   | Integration and Presentation of Analysis Information / 390                     |     |  |  |
|       | 13.1.4                                                                   | Narrative Reports Versus Tabular Formats / 390                                 |     |  |  |
| 13.2  | Designing Formats for Conducting Analysis and<br>Reporting Results / 391 |                                                                                |     |  |  |
| 13.3  | -                                                                        | entation Reports / 393                                                         |     |  |  |
| 1510  |                                                                          | Reporting Analysis Results / 394                                               |     |  |  |
| 13.4  | Conceptual Models / 394                                                  |                                                                                |     |  |  |
| 20.7. | _                                                                        | Hammer Model / 394                                                             |     |  |  |
|       |                                                                          | Complex Scenario Models / 395                                                  |     |  |  |
|       |                                                                          | Fishbone Diagrams / 396                                                        |     |  |  |
| 13.5  | 4.007                                                                    |                                                                                |     |  |  |
|       | -                                                                        | Complex Interactions / 397                                                     |     |  |  |
| 13.6  | Operating and Support Hazard Analysis Example / 398                      |                                                                                |     |  |  |
| 13.7  | 1.77                                                                     |                                                                                |     |  |  |
| Refer | ence /                                                                   |                                                                                |     |  |  |
|       |                                                                          | ng / 408                                                                       |     |  |  |
| СНА   | PTER 1                                                                   | 14 AUTOMATION, COMPUTER, AND SOFTWARE COMPLEXITIES                             | 411 |  |  |
| 14.1  | Comple                                                                   | ex System Analysis / 411                                                       |     |  |  |
| 14.2  |                                                                          |                                                                                |     |  |  |
| 14.3  | Unders                                                                   | standing the Adverse Sequence / 413                                            |     |  |  |
|       | 14.3.1                                                                   | Malfunction and Failure Modes / 413                                            |     |  |  |
|       | 14.3.2                                                                   | Understanding System Functions / 413                                           |     |  |  |
|       | 14.3.3                                                                   | Understanding Conceptual Processes / 414                                       |     |  |  |
| 14.4  | Additie                                                                  | onal Software Safety Analysis Techniques / 414                                 |     |  |  |
|       | 14.4.1                                                                   | Software Malfunction / 414                                                     |     |  |  |
|       | 14.4.2                                                                   |                                                                                |     |  |  |
|       | 14.4.3                                                                   |                                                                                |     |  |  |
|       | 1444                                                                     | Complexity, Understanding Risks, and System States / 417                       |     |  |  |

|                                                                  | 14.4.5                                                 | System States / 418                                        |     |  |  |
|------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|-----|--|--|
|                                                                  | 14.4.6                                                 | Complexity of Initiators, Contributors, and                |     |  |  |
|                                                                  |                                                        | System Accidents / 418                                     |     |  |  |
|                                                                  | 14.4.7                                                 | Functional Abstractions and Domains / 418                  |     |  |  |
|                                                                  | 14.4.8                                                 | Latent Hazards Throughout the Life Cycle / 418             |     |  |  |
|                                                                  | 14.4.9                                                 | Errors in Model Use and Development / 419                  |     |  |  |
|                                                                  | 14.4.10                                                | Understanding Safety Criticality / 419                     |     |  |  |
|                                                                  | 14.4.11                                                | Understanding Transfer and Switching                       |     |  |  |
|                                                                  |                                                        | Complications / 419                                        |     |  |  |
| 14.5                                                             | 4.5 True Redundancy / 420                              |                                                            |     |  |  |
|                                                                  | 14.5.1                                                 | System Redundancy / 420                                    |     |  |  |
| 14.6                                                             | Complex                                                | ities and Hazards Within Computer Hardware / 420           |     |  |  |
|                                                                  | 14.6.1                                                 | Controls, Mitigations, and Added Complexities / 420        |     |  |  |
| 14.7                                                             | Initiators                                             | and Contributors: The Errors Associated with Software / 43 | 21  |  |  |
| 14.8                                                             | Other Specialized Techniques, Analysis Methods, and    |                                                            |     |  |  |
|                                                                  | Tools for                                              | r Evaluating Software and Computer Systems / 426           |     |  |  |
|                                                                  | 14.8.1                                                 | Software Reliability / 426                                 |     |  |  |
|                                                                  | 14.8.2                                                 | Static Complexity Analysis / 426                           |     |  |  |
|                                                                  | 14.8.3                                                 | Dynamic Analysis / 426                                     |     |  |  |
|                                                                  | 14.8.4                                                 | Test Coverage Monitoring / 426                             |     |  |  |
| 14.9                                                             | Existing Legacy Systems, Reusable Software, Commercial |                                                            |     |  |  |
|                                                                  | Off-the-Shelf (COTS) Software, and Nondevelopment      |                                                            |     |  |  |
|                                                                  |                                                        | (DIs) / 427                                                |     |  |  |
| 14.10 Topics for Student Projects and Theses / 428               |                                                        |                                                            |     |  |  |
| Refere                                                           | nces / 42                                              | 29                                                         |     |  |  |
| Further                                                          | Reading                                                | / 429                                                      |     |  |  |
| APPE                                                             | NDIX A:                                                | REFERENCE TABLES                                           | 431 |  |  |
| APPENDIX B: AN OUTSTANDING APPLICATION OF ASSURANCE TECHNOLOGIES |                                                        |                                                            |     |  |  |
|                                                                  |                                                        |                                                            | 440 |  |  |
| INDEX                                                            | •                                                      |                                                            | 449 |  |  |