Bernard Hertlein Allen Davis

Nondestructive Testing of Deep Foundations

WILEY

Contents

F	ORE	WORD	xi
PREFACE			
A	BOU	Γ THE AUTHORS	XV
A	CKN	OWLEDGEMENTS	xvii
Pl	ното	OGRAPHY AND ILLUSTRATION CREDITS	xix
1	INT	RODUCTION AND BRIEF HISTORY	1
	1.1	Introduction	1
	1.2	A Brief History of Deep Foundations and the Advent of NDT	3
		1.2.1 Caveat and Acknowledgement	3
		1.2.2 The History	4
	1.3	Deep Foundation Failures and NDT	10
		1.3.1 Esso Oil Tanks, Fawley, Hants, uk	11
		1.3.2 Neumaier Hall, Moorhead, MN, USA	11
		1.3.3 Tampa Crosstown Expressway, Tampa, FL, USA	13
		1.3.4 Yuen Chau Kok, Shatin Area 14B, Phase 2, Hong Kong	14
	1.4	Deficiencies in Existing Foundations	16
2	DE	EP FOUNDATION CONSTRUCTION METHODS	19
	2.1	Driven Piles - Timber, Steel and Concrete	20
		2.1.1 Drop-hammers	22
		2.1.2 Diesel Hammers	23
		2.1.3 Hydraulic Hammers	24
		2.1.4 Pile-driving Vibrators	25
		2.1.5 Direct-push Pile Installers	27
		2.1.6 Advantages and Limitations of Driven Piles	28

vi	Contents

	2.2	Caissons and Drilled Shafts	28
		2.2.1 Advantages and Limitations of Drilled Shafts	30
		2.2.2 Advantages and Limitations of Slurry	31
	2.3	Diaphragm Walls, Cut-off Walls and Barrettes	32
	2.4	Augered, Cast-in-Place Piles	33
		2.4.1 Advantages and Limitations of ACIP Piles	34
	2.5	Micropiles or Minipiles	35
		2.5.1 Applications	36
		2.5.2 Drilled Micropile Type/Classification	37
		2.5.3 Relationship between Micropile Application, Design	
		Concept and Construction Type	38
		2.5.4 Design Aspects	39
		2.5.5 Nondestructive Testing	40
		2.5.6 Research and Development	40
	2.6	Stone Columns and other Soil Improvement Techniques	40
		2.6.1 Stone Columns	41
		2.6.2 Deep Mixing	41
		2.6.3 Permeation Grouting	42
		2.6.4 Dynamic Compaction	42
		W COM C A PERSON WITE CHOICE OF COARS (TICK)	
3	НО	W SOILS AFFECT THE CHOICE OF FOUNDATION	43
		W SOILS AFFECT THE CHOICE OF FOUNDATION ADITIONAL, VISUAL AND NEW INSPECTION METHODS	
	TRA		
	TRA	ADITIONAL, VISUAL AND NEW INSPECTION METHODS	
	TRA FOI	ADITIONAL, VISUAL AND NEW INSPECTION METHODS R DEEP FOUNDATION CONSTRUCTION	47
	TRA FOI	ADITIONAL, VISUAL AND NEW INSPECTION METHODS R DEEP FOUNDATION CONSTRUCTION Driven Piles Augered, Cast-in-Place Piles	47 47
	TRA FOI 4.1 4.2	ADITIONAL, VISUAL AND NEW INSPECTION METHODS R DEEP FOUNDATION CONSTRUCTION Driven Piles Augered, Cast-in-Place Piles	47 47 48
	TRA FOI 4.1 4.2	ADITIONAL, VISUAL AND NEW INSPECTION METHODS R DEEP FOUNDATION CONSTRUCTION Driven Piles Augered, Cast-in-Place Piles Drilled Shafts	47 47 48 50
3	TRA FOI 4.1 4.2	ADITIONAL, VISUAL AND NEW INSPECTION METHODS R DEEP FOUNDATION CONSTRUCTION Driven Piles Augered, Cast-in-Place Piles Drilled Shafts 4.3.1 Dry Hole Construction	47 47 48 50 50
	TRA FOI 4.1 4.2 4.3	ADITIONAL, VISUAL AND NEW INSPECTION METHODS R DEEP FOUNDATION CONSTRUCTION Driven Piles Augered, Cast-in-Place Piles Drilled Shafts 4.3.1 Dry Hole Construction 4.3.2 Wet Hole Construction	47 47 48 50 50 51
4	TRA FOI 4.1 4.2 4.3	ADITIONAL, VISUAL AND NEW INSPECTION METHODS R DEEP FOUNDATION CONSTRUCTION Driven Piles Augered, Cast-in-Place Piles Drilled Shafts 4.3.1 Dry Hole Construction 4.3.2 Wet Hole Construction The Inspector's Role	47 47 48 50 50 51 55
4	TRA FOI 4.1 4.2 4.3 4.4 A R	ADITIONAL, VISUAL AND NEW INSPECTION METHODS R DEEP FOUNDATION CONSTRUCTION Driven Piles Augered, Cast-in-Place Piles Drilled Shafts 4.3.1 Dry Hole Construction 4.3.2 Wet Hole Construction The Inspector's Role REVIEW OF FULL-SCALE LOAD-TESTING TECHNIQUES	47 48 50 50 51 55
4	TRA FOI 4.1 4.2 4.3 4.4 A R	ADITIONAL, VISUAL AND NEW INSPECTION METHODS R DEEP FOUNDATION CONSTRUCTION Driven Piles Augered, Cast-in-Place Piles Drilled Shafts 4.3.1 Dry Hole Construction 4.3.2 Wet Hole Construction The Inspector's Role REVIEW OF FULL-SCALE LOAD-TESTING TECHNIQUES Static Load-Test Techniques – Axial Compression 5.1.1 Reaction Systems 5.1.2 Proof Testing	47 47 48 50 50 51 55 59
4	TRA FOI 4.1 4.2 4.3 4.4 A R	ADITIONAL, VISUAL AND NEW INSPECTION METHODS R DEEP FOUNDATION CONSTRUCTION Driven Piles Augered, Cast-in-Place Piles Drilled Shafts 4.3.1 Dry Hole Construction 4.3.2 Wet Hole Construction The Inspector's Role REVIEW OF FULL-SCALE LOAD-TESTING TECHNIQUES Static Load-Test Techniques — Axial Compression 5.1.1 Reaction Systems 5.1.2 Proof Testing 5.1.3 Load-Transfer Tests	47 48 50 50 51 55 59 61 61 63 64
4	TRA FOI 4.1 4.2 4.3 4.4 A R	ADITIONAL, VISUAL AND NEW INSPECTION METHODS R DEEP FOUNDATION CONSTRUCTION Driven Piles Augered, Cast-in-Place Piles Drilled Shafts 4.3.1 Dry Hole Construction 4.3.2 Wet Hole Construction The Inspector's Role REVIEW OF FULL-SCALE LOAD-TESTING TECHNIQUES Static Load-Test Techniques — Axial Compression 5.1.1 Reaction Systems 5.1.2 Proof Testing 5.1.3 Load-Transfer Tests 5.1.4 Quick Load Test	47 48 50 50 51 55 59 61 61 63 64 65
4	TRA FOI 4.1 4.2 4.3 4.4 A R	ADITIONAL, VISUAL AND NEW INSPECTION METHODS R DEEP FOUNDATION CONSTRUCTION Driven Piles Augered, Cast-in-Place Piles Drilled Shafts 4.3.1 Dry Hole Construction 4.3.2 Wet Hole Construction The Inspector's Role SEVIEW OF FULL-SCALE LOAD-TESTING TECHNIQUES Static Load-Test Techniques — Axial Compression 5.1.1 Reaction Systems 5.1.2 Proof Testing 5.1.3 Load-Transfer Tests 5.1.4 Quick Load Test 5.1.5 Constant Rate of Penetration Test	47 47 48 50 50 51 55 59 61 61 63 64 65 65
4	TRA FOI 4.1 4.2 4.3 4.4 A R	ADITIONAL, VISUAL AND NEW INSPECTION METHODS R DEEP FOUNDATION CONSTRUCTION Driven Piles Augered, Cast-in-Place Piles Drilled Shafts 4.3.1 Dry Hole Construction 4.3.2 Wet Hole Construction The Inspector's Role SEVIEW OF FULL-SCALE LOAD-TESTING TECHNIQUES Static Load-Test Techniques — Axial Compression 5.1.1 Reaction Systems 5.1.2 Proof Testing 5.1.3 Load-Transfer Tests 5.1.4 Quick Load Test 5.1.5 Constant Rate of Penetration Test 5.1.6 Bi-directional Load Test (Osterberg Cell)	47 48 50 50 51 55 59 61 61 63 64 65
4	TRA FOI 4.1 4.2 4.3 4.4 A R	ADITIONAL, VISUAL AND NEW INSPECTION METHODS R DEEP FOUNDATION CONSTRUCTION Driven Piles Augered, Cast-in-Place Piles Drilled Shafts 4.3.1 Dry Hole Construction 4.3.2 Wet Hole Construction The Inspector's Role REVIEW OF FULL-SCALE LOAD-TESTING TECHNIQUES Static Load-Test Techniques — Axial Compression 5.1.1 Reaction Systems 5.1.2 Proof Testing 5.1.3 Load-Transfer Tests 5.1.4 Quick Load Test 5.1.5 Constant Rate of Penetration Test 5.1.6 Bi-directional Load Test (Osterberg Cell) Static Load-Test Techniques — Axial Tension	47 47 48 50 50 51 55 59 61 61 63 64 65 65

Contents vii

6	HIGH-STRAIN TESTING FOR CAPACITY				
	ANI	D/OR INTEGRITY	71		
	6.1	High-Strain Dynamic (Drop-Weight) Testing of Driven Pile	es 71		
		6.1.1 The Case Method	74		
		6.1.2 The TNO Method	75		
		6.1.3 The Effect of Soil and Other Factors	76		
	6.2	High-Strain Testing of Drilled Shafts and Augered,			
		Cast-in-Place Piles	79		
		6.2.1 CEBTP Simbat	79		
		6.2.2 SIMBAT Test Methodology	82		
	6.3	Modification of Shaft Head for High-Strain Tests	84		
	6.4	Practical Considerations for Drop-Weight Techniques	87		
		6.4.1 Newton's Apple	88		
	6.5	HSDT Alternatives	89		
		6.5.1 The Statnamic Method	89		
		6.5.2 The Fundex Method	96		
	6.6	Limitations of High-Strain Dynamic Testing	98		
7	LO	W-STRAIN SURFACE TESTS – SONIC ECHO	101		
	7.1	Sonic Echo (Impulse ECHO)	102		
		7.1.1 Test Principle	104		
		7.1.2 Typical Test Procedure	104		
		7.1.3 Data Processing and Display	105		
		7.1.4 Effect of Impedance Change	106		
		7.1.5 Use of Multiple Response Transducers – Double			
		Sensor Testing	110		
		7.1.6 Sample Specification	113		
8	son	NIC MOBILITY (IMPULSE RESPONSE)	115		
	8.1	Principles of Impulse–Response Curve Interpretation	122		
		8.1.1 Characteristic Mobility	122		
		8.1.2 Measurement of Shaft Stiffness	124		
	8.2	Practical Considerations	124		
		8.2.1 Acoustic Length	124		
		8.2.2 Frequency Shift of Mobility Plot	125		
		8.2.3 Pile Static/Dynamic Stiffness Relationship	125		
	8.3	Classification of Signal Responses	127		
		8.3.1 Type 0 signal	128		
		8.3.2 Type 1 signal	129		
		8.3.3 Type 2 signal	129		

viji	Contents
------	----------

	8.4	Pile Simulation Techniques	132
		8.4.1 Mobility Simulation	132
	8.5	Time Domain-Velocity Reflectors	135
		8.5.1 Sample Specification	136
9	THE	IMPEDANCE-LOG ANALYSIS	137
10	LOW	-STRAIN DOWN-HOLE TESTS	143
	10.1	Introduction	143
	10.2	Cross-Hole Sonic Logging	143
		10.2.1 Capabilities	144
		10.2.2 Limitations and Cost	145
	10.3	Cross-Hole Tomography	148
		10.3.1 Sample Specification	152
	10.4	Single-Hole Sonic Logging	152
		10.4.1 Capabilities	153
		10.4.2 Limitations	153
	10.5	Gamma–Gamma Logging	155
		10.5.1 Capabilities	161
		10.5.2 Limitations and cost	161
	10.6	Parallel Seismic Testing	162
		10.6.1 Capabilities	163
		10.6.2 Limitations and Cost	164
11	FIEL	D MOCK-UPS OF DEEP FOUNDTIONS:	
	CLA	SS-A PREDICTIONS	167
12	THE	RELIABILITY OF PILE SHAFT INTEGRITY TESTING	175
	12.1	Statistical NDT Sampling Schemes	176
	12.2	Methodology Reliability	178
		12.2.1 Group A: Shaft Head Impact Tests	178
		12.2.2 Group B: Cross-Hole and Down-Hole Tests	186
13	CUR	RENT RESEARCH	189
	13.1	Developments in Measurement and Analysis	190
		13.1.1 The Importance of Transducer Coupling	190
	13.2	Electrical Methods	190
		13.2.1 Non-Polarizing Electrodes	191
		13.2.2 Self-potential	191
		13.2.3 Resistance to Earth	192

Contents ix

		13.2.4	Resistivity (Wenner Array)	192
			Induced Polarization	194
		13.2.6	Cross-Borehole Radar and Electrical	
			Resistivity Tomography	195
	13.3	_	Techniques	198
	13.4		Wave Analysis	201
	13.5		cal Analysis	202
	13.6		onsolidating Concrete	203
	13.7		able Vibration Levels	206
	13.8		ated Monitoring Systems	206
			ss Acquisition Systems	207
	13.10	'SMAF	RT' Structures	208
14	THE	PLACE	OF NONDESTRUCTIVE TESTING AT THE	
	BEGI	NNING	OF THE 21ST CENTURY	211
	14.1		structive testing and load and resistence factor design	214
	14.2		up an Effective Quality Management Program	215
			Testing the Tester?	216
			ance Criteria	220
	14.5	Evaluat	ting Defects	221
AF	PENDI	XI ST	TRESS-WAVE PROPAGATION IN	
			YLINDRICAL STRUCTURES	223
1.	General	Theory		223
2.	Determi	nation o	of Damping	228
			of Harmonic Response - Mechanical Impedance	229
			ency of an infinitely long pile	232
			t for a finite length pile with unknown mechanical	
	impedar	ice at its	base	233
AP	PENDI	XII C	CONTACT ADDRESSES	235
ΔP	PENDI	X III	STANDARDS REFERRED TO	
	L		IN THIS BOOK	239
	Cross I			
			ic Logging	239
			MMA Logging	240
			ting of Piles	240
	mipuise Parallel		nd Impulse-Response Tests	240
			ting of Deep Foundation Shafts	241 241
o.	Grade L	vau IESI	ang or Deep Poundation Shalls	Z41

x		Contents
APPENDIX IV	SAMPLE SPECIFICATIONS FOR NDT METHODS FOR DEEP FOUNDATIONS	243

1. Sample Specification for Low-Strain Testing by Either Impulse Echo

2. Sample Specification for Cross-Hole Sonic Logging (CSL)

or Impulse Response

REFERENCES

INDEX

244

248

255

267