INTERNATIONAL EDITION

Applied Hydrogeology

Fourth Edition

CONTENTS

Preface xvi
About the Author xviii

CHAPTER

W	ater
---	------

- 1.1 Water 1
- 1.2 Hydrology and Hydrogeology 3
- 1.3 The Hydrologic Cycle 4
- 1.4 Energy Transformations 5
- 1.5 The Hydrologic Equation 8 Case Study: Mono Lake 9
- 1.6 Hydrogeologists 11
- 1.7 Applied Hydrogeology 11
- 1.8 The Business of Hydrogeology (What Do Hydrogeologists Do All Day?) 12
 - 1.8.1 Application of Hydrogeology to Human Concerns 12
 - 1.8.2 Business Aspects of Hydrogeology 14
 - 1.8.3 Ethical Aspects of Hydrogeology 15
- 1.9 Sources of Hydrogeological Information 16
- 1.10 American Society of Testing and Materials Standards 18
- 1.11 Working the Problems 18
- 1.12 Solving Problems Using Spreadsheets 20

Notation 22 • Analysis 22 • Problems 22

CHAPTER

Elements of the Hydrologic Cycle

- 2.1 Evaporation 24
- 2.2 Transpiration 27
- 2.3 Evapotranspiration 28
- 2.4 Condensation 32
- 2.5 Formation of Precipitation 32
- 2.6 Measurement of Precipitation and Snow 32
- 2.7 Effective Depth of Precipitation 33
- 2.8 Events During Precipitation 37
- 2.9 Stream Hydrographs 42
 - 2.9.1 Baseflow Recessions 42
 - 2.9.2 Storm Hydrograph 44
 - 2.9.3 Gaining and Losing Streams 46
- 2.10 Rainfall-Runoff Relationships 48
- 2.11 Duration Curves 50

2.12	Determi	ining Ground-Water Recharge from Baseflow 51	
	2.12.1	Seasonal Recession Method (Meyboom Method) 51	
	2.12.2	Recession Curve Displacement Method (Rorabaugh Method) 5	53
2.13	Measure	ement of Streamflow 55	
	2.13.1	Stream Gauging 55	
	2.13.2	Weirs 57	
2.14	Mannin	g Equation 58	

Properties of Aquifers

CHARTER

3.1	Matter and	Energy (A	Brief Review	of Physics)	66

3.2 Porosity of Earth Materials 69

3.2.1 Definition of Porosity 69

Notation 60 • Analysis 61 • Problems 61

- 3.2.2 Porosity and Classification of Sediments 70
- 3.2.3 Porosity of Sedimentary Rocks 75
- 3.2.4 Porosity of Plutonic and Metamorphic Rocks 77
- 3.2.5 Porosity of Volcanic Rocks 78
- 3.3 Specific Yield 78
- 3.4 Hydraulic Conductivity of Earth Materials 81
 - 3.4.1 Darcy's Experiment 81
 - 3.4.2 Hydraulic Conductivity 82
 - 3.4.3 Permeability of Sediments 84

Case Study: Hydraulic Conductivity Estimates in Glacial Outwash 88

- 3.4.4 Permeability of Rocks 89
- 3.5 Permeameters 90
- 3.6 Water Table 93
- 3.7 Aquifers 95
- 3.8 Water-Table and Potentiometric Surface Maps 98
- 3.9 Aquifer Characteristics 100
- 3.10 Compressibility and Effective Stress 102
- 3.11 Homogeneity and Isotropy 104
- 3.12 Gradient of the Potentiometric Surface 107

Notation 109 • Analysis 109 • Problems 109

CHAPTER

Principles of Ground-Water Flow

- 4.1 Introduction 113
- 4.2 Mechanical Energy 114
- 4.3 Hydraulic Head 115
- 4.4 Head in Water of Variable Density 118
- 4.5 Force Potential and Hydraulic Head 121
- 4.6 Darcy's Law 122

- 4.6.1 Darcy's Law in Terms of Head and Potential 122
- 4.6.2 The Applicability of Darcy's Law 123
- 4.6.3 Specific Discharge and Average Linear Velocity 124
- 4.7 Equations of Ground-Water Flow 125
 - 4.7.1 Confined Aquifers 125
 - 4.7.2 Unconfined Aquifers 129
- 4.8 Solution of Flow Equations 129
- 4.9 Gradient of Hydraulic Head 129
- 4.10 Relationship of Ground-Water-Flow Direction to Grad *h* 131
- 4.11 Flow Lines and Flow Nets 132
- 4.12 Refraction of Flow Lines 136
- 4.13 Steady Flow in a Confined Aquifer 138
- 4.14 Steady Flow in an Unconfined Aquifer 140

Notation 146 • Analysis 147 • Problems 148

CHAPTER

Ground-Water Flow to Wells

- 5.1 Introduction 150
- 5.2 Basic Assumptions 151
- 5.3 Radial Flow 151
- 5.4 Computing Drawdown Caused by a Pumping Well 153
 - 5.4.1 Flow in a Completely Confined Aquifer 153
 - 5.4.2 Flow in a Leaky, Confined Aquifer 156
 - 5.4.3 Flow in an Unconfined Aquifer 164
- 5.5 Determining Aquifer Parameters from Time-Drawdown Data 166
 - 5.5.1 Introduction 166
 - 5.5.2 Steady-State Conditions 166
 - 5.5.3 Nonequilibrium Flow Conditions 169
 - 5.5.4 Nonequilibrium Radial Flow in a Leaky Aquifer with Storage in the Aquitard 183
 - 5.5.5 Nonequilibrium Radial Flow in an Unconfined Aquifer 184
 - 5.5.6 Effect of Partial Penetration of Wells 188
- 5.6 Slug Tests 190
 - 5.6.1 Determination of Aquifer Parameters with Slug Tests 190
 - 5.6.2 Overdamped Response Slug Tests 190
 - 5.6.3 Underdamped Response Slug Test 200
 - 5.6.4 General Observations on Slug-Test Analysis 204
- 5.7 Estimating Aquifer Transmissivity from Specific Capacity Data 205
- 5.8 Intersecting Pumping Cones and Well Interference 207
- 5.9 Effect of Hydrogeologic Boundaries 208
- 5.10 Aquifer-Test Design 210
 - 5.10.1 Single-Well Aquifer Tests 210
 - 5.10.2 Aquifer Tests with Observation Wells 212

CHAPTER

Soil Moisture
and
Ground-Water
Recharge

- 6.1 Introduction 219
- 6.2 Porosity and Water Content of Soil 220
- 6.3 Capillarity and the Capillary Fringe 223
- 6.4 Pore-Water Tension in the Vadose Zone 225
- 6.5 Soil Water 225
- 6.6 Theory of Unsaturated Flow 228
- 6.7 Water-Table Recharge 231

Notation 234 • Analysis 235 • Problems 235

CHAPTER

Regional Ground-Water Flow

- 7.1 Introduction 236
- 7.2 Steady Regional Ground-Water Flow in Unconfined Aquifers 237
 - 7.2.1 Recharge and Discharge Areas 237
 - 7.2.2 Ground-Water Flow Patterns in Homogeneous Aquifers 237
 - 7.2.3 Effect of Buried Lenses 243
 - 7.2.4 Nonhomogeneous and Anisotropic Aquifers 244
- 7.3 Transient Flow in Regional Ground-Water Systems 247
- 7.4 Noncyclical Ground Water 248
- 7.5 Springs 248
- 7.6 Geology of Regional Flow Systems 250

Case Study: Regional Flow Systems in the Great Basin 250

Case Study: Regional Flow Systems in the Coastal Zone of the Southeastern

United States 255

Case Study: Regional Flow System of the High Plains Aquifer 263

Case Study: The Dakota Aquifer 268

7.7 Interactions of Ground Water and Lakes or Wetlands and Streams 272

Computer Notes 279 • Notation 280 • Analysis 280 • Problems 280

CHAPTER

Geology of Ground-Water Occurrence

- 8.1 Introduction 283
- 8.2 Unconsolidated Aquifers 284

8.2.1 Glaciated Terrane 285

Case Study: Hydrogeology of a Buried Valley Aquifer at Dayton, Ohio 289

хi

	8.2.2	Alluvial Valleys 289	
	8.2.3	Alluvium in Tectonic Valleys 291	
	Case S	tudy: Tectonic Valleys—San Bernardino Area 294	
8.3	Lithifie	ed Sedimentary Rocks 297	
	Case Study: Sandstone Aquifer of Northeastern Illinois-		
		eastern Wisconsin 297	
	8.3.1	Complex Stratigraphy 300	
	8.3.2	Folds and Faults 302	
		tudy: Faults as Aquifer Boundaries 303	
	8.3.3	Clastic Sedimentary Rocks 307	
		tudy: Newark Basin Hydrogeology 309 Carbonate Rocks 310	
		Coal and Lignite 319	
8.4		s and Metamorphic Rocks 319	
0.4	8.4.1	Intrusive Igneous and Metamorphic Rocks 319	
	8.4.2	Volcanic Rocks 321	
		tudy: Volcanic Plateaus—Columbia River Basalts 321	
		tudy: Volcanic Domes—Hawaiian Islands 322	
8.5		d Water in Permafrost Regions 323	
0.5		tudy: Alluvial Aquifers—Fairbanks, Alaska 326	
8.6		d Water in Desert Areas 326	
0.0		tudy: Desert Hydrology—Azraq Basin, Jordan 327	
8.7		I-Plain Aquifers 327	
8.8		-Water-Saline-Water Relations 331	
	8.8.1	Coastal Aquifers 331	
	8.8.2	Oceanic Islands 335	
8.9	Tidal E	iffects 337	
8.10			
		Western Mountain Ranges 338	
		Alluvial Basins 340	
	8.10.3	Columbia Lava Plateau 341	
	8.10.4	Colorado Plateau and Wyoming Basin 341	
	8.10.5	High Plains 341	
	8.10.6	Nonglaciated Central Region 342	
	8.10.7	Glaciated Central Region 342	
	8.10.8	Piedmont—Blue Ridge Region 343	
	8.10.9	Northeast and Superior Uplands 343	
	8.10.10	Atlantic and Gulf Coastal Plain 343	
	*	Southeast Coastal Plain 344	
		2 Alluvial Valleys 344	
		3 Hawaiian Islands 344	
		1 Alaska 344	
	8.10.13	5 Puerto Rico 344	
NILI	Liam 2/15	: a Duolaloma 245	

Notation 345 • Problems 345

CHAPTER

Water	
Chemistry	7

9.1 Introduction 3	346
--------------------	-----

- 9.2 Units of Measurement 347
- 9.3 Types of Chemical Reactions in Water 348
- 9.4 Law of Mass Action 348
- 9.5 Common-Ion Effect 350
- 9.6 Chemical Activities 350
- 9.7 Ionization Constant of Water and Weak Acids 353
- 9.8 Carbonate Equilibrium 355
 - 9.8.1 Carbonate Reactions 356
 - 9.8.2 Carbonate Equilibrium in Water with Fixed Partial Pressure of CO₂ 358
 - 9.8.3 Carbonate Equilibrium with External pH Control 359
- 9.9 Thermodynamic Relationships 361
- 9.10 Oxidation Potential 362
- 9.11 Ion Exchange 366
- 9.12 Isotope Hydrology 368
 - 9.12.1 Stable Isotopes 368
 - 9.12.2 Radioactive Isotopes Used in Age Dating 371
- 9.13 Major Ion Chemistry 373
- 9.14 Presentation of Results of Chemical Analyses 374
 - 9.14.1 Piper Diagram 374
 - 9.14.2 Stiff Pattern 376
 - 9.14.3 Schoeller Semilogarithmic Diagram 377

Case Study: Chemical Geohydrology of the Floridan Aquifer System 377

Notation 381 • Analysis 382 • Problems 383

CHAPTER

Water Quality and Ground-Water Contamination

- 10.1 Introduction 385
- 10.2 Water-Quality Standards 388
- 10.3 Collection of Water Samples 389
- 10.4 Ground-Water Monitoring 391
 - 10.4.1 Planning a Ground-Water Monitoring Program 391
 - 10.4.2 Installing Ground-Water Monitoring Wells 391
 - 10.4.3 Withdrawing Water Samples from Monitoring Wells 396
- 10.5 Vadose-Zone Monitoring 397
- 10.6 Mass Transport of Solutes 400
 - 10.6.1 Introduction 400
 - 10.6.2 Diffusion 400
 - 10.6.3 Advection 401
 - 10.6.4 Mechanical Dispersion 401
 - 10.6.5 Hydrodynamic Dispersion 402

10.6.6 Retardation 407
10.6.7 Degradation of Organic Compounds 415
10.7 Ground-Water Contamination 415
10.7.1 Introduction 415
10.7.2 Septic Tanks and Cesspools 416
10.7.3 Landfills 418
10.7.4 Chemical Spills and Leaking Underground Tanks 420
10.7.5 Mining 423
Case Study: Contamination from Uranium Tailings Ponds 424
10.7.6 Other Sources of Ground-Water Contamination 425
10.8 Ground-Water Restoration 426
10.8.1 Risk-Based Corrective Action 426
10.8.2 Source-Control Measures 426
10.8.3 Plume Treatment 427
10.8.4 Natural and Enhanced Bioremediation 428
10.9 Case History: Ground-Water Contamination at a Superfund Site 428
10.9.1 Background 428
10.9.2 Geology 430
10.9.3 Hydrogeology 431
10.9.4 Ground-Water Contamination 432
10.9.5 Site Remediation 434
10.10 Capture-Zone Analysis 436
Notation 439 • Analysis 440 • Problems 440
11.1 Introduction 441
11.2 Dynamic Equilibrium in Natural Aquifers 442
Case Study: Deep Sandstone Aquifer of Northeastern Illinois 443
11.3 Ground-Water Budgets 443
11.4 Management Potential of Aquifers 445
11.5 Paradox of Safe Yield 447
11.6 Water Law 449
11.6.1 Legal Concepts 449
11.6.2 Laws Regulating Quantity of Surface Water 449
11.6.3 Laws Regulating Quantity of Ground Water 452
Case Study: Arizona's Ground-Water Code 454
11.6.4 Laws Regulating the Quality of Water 455
Case Study: Wisconsin's Ground-Water Protection Law 458

Analysis 467

11.7 Artificial Recharge 459

11.11 Global Water Issues 465

11.8 Protection of Water Quality in Aquifers 460
11.9 Ground-Water Mining and Cyclic Storage 463
11.10 Conjunctive Use of Ground and Surface Water 464

C H A P T E R

Ground-Water

Development and Management

CHAPTER

Field
Methods

- 12.1 Introduction 468
- 12.2 Fracture-Trace Analysis 469
- 12.3 Surficial Methods of Geophysical Investigations 474
 - 12.3.1 Direct-Current Electrical Resistivity 474
 - 12.3.2 Electromagnetic Conductivity 479
 - 12.3.3 Seismic Methods 483
 - 12.3.4 Ground-Penetrating Radar and Magnetometer Surveys 490
 - 12.3.5 Gravity and Aeromagnetic Methods 491
- 12.4 Geophysical Well Logging 492
 - 12.4.1 Caliper Logs 495
 - 12.4.2 Temperature Logs 495
 - 12.4.3 Single-Point Resistance 495
 - 12.4.4 Resistivity 498
 - 12.4.5 Spontaneous Potential 498
 - 12.4.6 Nuclear Logging 499

Case Study: Use of Multiple Geophysical Methods to Determine the Extent and Thickness of a Critical Confining Layer 502

- 12.5 Hydrogeologic Site Evaluations 505
- 12.6 Responsibilities of the Field Hydrogeologist 508
- 12.7 Project Reports 510

Notation 512 • Problems 512

CHAPTER

Ground-Water Models

- 13.1 Introduction 514
- 13.2 Applications of Ground-Water Models 516
- 13.3 Data Requirements for Models 517
- 13.4 Finite-Difference Models 519
 - 13.4.1 Finite-Difference Grids 519
 - 13.4.2 Finite-Difference Notation 519
 - 13.4.3 Boundary Conditions 520
 - 13.4.4 Methods of Solution for Steady-State Case for Square Grid Spacing 521
 - 13.4.5 Methods of Solution for the Transient Case 523
- 13.5 Finite-Element Models 524
- 13.6 Use of Published Models 525
- 13.7 MODFLOW Basics 528
- 13.8 Visual MODFLOW 530
- 13.9 Geographical Information Systems 530

Analysis 531

Appendices 534

- 1. Values of the function W(u) for various values of u = 535
- 2. Values of the function $F(\eta,\mu)$ for various values of η and μ 536
- 3. Values of the functions $W(\mu, r/B)$ for various values of μ 537
- 4. Values of the function $H(\mu, \beta)$ 538
- 5. Values of the functions $K_0(x)$ and $\exp(x)K_0(x)$ 539
- 6. Values of the functions $W(u_A, \Gamma)$, and $W(u_B, \Gamma)$ for water-table aquifers 540
- 7. Table for length conversion 542
- 8. Table for area conversion 542
- 9. Table for volume conversion 543
- 10. Table for time conversion 543
- 11. Solubility products for selected minerals and compounds 544
- 12. Atomic weights and numbers of naturally occurring elements 545
- 13. Table of values of erf (x) and erfc (x) 547
- 14. Absolute density and absolute viscosity of water 548
- 15. Loading and running computer programs 549

Glossary 552 Answers 562 References 567 Index 588