
Absorption and Drug Development

Solubility, Permeability, and Charge State

Alex Avdeef

CONTENTS

PΕ	REFA	ACE	xiii	
ΑI	CKN	OWLEDGMENTS	xvii	
DI	EFIN	ITIONS	ixx	
1	INT	INTRODUCTION		
	1.1 1.2 1.3 1.4 1.5 1.6	ADME and Medicinal Chemists / 4 The "A" in ADME / 5		
2	TRA	ANSPORT MODEL	7	
	2.12.22.32.42.52.62.7	Permeability-Solubility-Charge State and the pH Partition Hypothesis / 7 Properties of the Gastrointestinal Tract (GIT) / 11 pH Microclimate / 17 Intracellular pH Environment / 18 Tight-Junction Complex / 18 Structure of Octanol / 19 Biopharmaceutics Classification System / 20		

3	CHA	ARGE STATE	22			
	3.1 Constant Ionic Medium Reference State / 23					
	3.2	pK_a Databases / 24				
	3.3	Potentiometric Measurements / 25				
		3.3.1 Bjerrum Plots / 25				
		3.3.2 pH Definitions and Electrode Standardization / 27				
		3.3.3 The "Solubility Problem" and Cosolvent Methods / 29				
	3.3.4 Use of Cosolvents for Water-Soluble Molecules / 30					
	3.4 Spectrophotometric Measurements / 31					
	3.5 Capillary Electrophoresis Measurements / 32					
	3.6 Chromatographic p K_a Measurement / 33					
3.7 p K_a Microconstants / 33		pK_a Microconstants / 33				
	3.8	pK_a "Gold Standard" for Drug Molecules / 35				
4	PAF	ITITIONING INTO OCTANOL	42			
	4.1	Tetrad of Equilibria / 43				
	4.2	Conditional Constants / 45				
	4.3	log P Databases / 45				
	4.4	log D / 45				
	4.5	Partitioning of Quaternary Ammonium Drugs / 50				
	4.6	log D of Multiprotic Drugs and the Common-Ion Effect / 50				
	4.7	Summary of Charged-Species Partitioning in Octanol-Water / 53				
	4.8	Ion Pair Absorption of Ionized Drugs—Fact or Fiction? / 53				
	4.9	Micro-log P / 54				
	4.10	HPLC Methods / 54				
	4.11	IAM Chromatography / 54				
	4.12	Liposome Chromatography / 55				
	4.13	Other Chromatographic Methods / 55				
	4.14	pH-Metric log P Method / 55				
		High-Throughput log P Methods / 59				
	4.16	Octanol-Water $\log P^N$, $\log P^I$, and $\log D_{7.4}$ "Gold Standard" for Drug Molecules / 59				
		Cold Similard Tol Ding Protocules (3)				
5	PAR	TITIONING INTO LIPOSOMES	67			
	5.1	Tetrad of Equilibria and Surface Ion Pairing (SIP) / 67				
	5.2	Databases / 69				
	5.3	Location of Drugs Partitioned into Bilayers / 69				

5.4	Thermodynamics of Partitioning: Entropy- or Enthalpy-Driven? / 70						
5.5	Electrostatic and Hydrogen Bonding in a Low-Dielectric Medium / 71						
5.6		Fires, H ⁺ /OH ⁻ Currents, and the Permeability of Amino					
		d Peptides / 73					
5.7	Preparation Methods: MLV, SUV, FAT, LUV, ET / 74						
5.8	-	ental Methods / 75					
5.9		on of $\log P_{\text{mem}}$ from $\log P / 76$					
	-	$p_{\rm mem}$, and the Prediction of log $P_{\rm mem}^{\rm SIP}$ from log P^{l} / 79 dices of Lipophilicity: Liposomes, IAM, and Octanol / 83					
	-	it Wrong from One-Point log D_{mem} Measurement / 84					
		ing into Charged Liposomes / 85					
	~ "	hifts in Charged Liposomes and Micelles / 86					
		on of Absorption from Liposome Partition Studies? / 90					
5.10	log P mem	, log P ^{SIP} "Gold Standard" for Drug Molecules / 90					
SOL	UBILITY	,	91				
6.1	Solubilit	y–pH Profiles / 92					
0.1		Monoprotic Weak Acid, HA (or Base, B) / 92					
	6.1.2	Diprotic Ampholyte, XH ₂ ⁺ / 93					
	6.1.3	Gibbs p K_a / 93					
6.2		ations May Thwart Reliable Measurement of Aqueous					
0.2	Solubilit						
6.3	Database	es and the "Ionizable Molecule Problem" / 100					
6.4	Experim	ental Methods / 100					
	6.4.1	Saturation Shake-Flask Methods / 101					
	6.4.2	Turbidimetric Ranking Assays / 101					
	6.4.3	HPLC-Based Assays / 101					
	6.4.4	Potentiometric Methods / 101					
	6.4.5	Fast UV Plate Spectrophotometer Method / 107					
		6.4.5.1 Aqueous Dilution Method / 107					
		6.4.5.2 Cosolvent Method / 108					
6.5	Correction	on for the DMSO Effect by the Δ -Shift Method / 111					
	6.5.1	DMSO Binding to the Uncharged Form of a Compound / 1	11				
	6.5.2	Uncharged Forms of Compound-Compound Aggregation / 1	12				
	6.5.3	Compound-Compound Aggregation of Charged					
		Weak Bases / 112					
	6.5.4	Ionizable Compound Binding by					
		Nonionizable Excipients / 113					

Results of Aqueous Solubility Determined from Δ Shifts / 113

6

6.5.5

00	MICHIS						
6.6	Limits of Detection / 115						
6.7	$\log S_0$	'Gold Standard'' for Drug Molecules / 115					
		·					
PER	RMEABIL	ITY					
7.1		oility in the Gastrointestinal Tract and at the Brain Barrier / 116					
7.2	Historical Developments in Artificial-Membrane Permeability Measurement / 118						
	7.2.1	Lipid Bilayer Concept / 118					
	7.2.2	Black Lipid Membranes (BLMs) / 123					
	7.2.3	Microfilters as Supports / 124					
	7.2.4	Octanol-Impregnated Filters with Controlled Water Pores / 128					
7.3	Parallel	Artificial-Membrane Permeability Assay (PAMPA) / 128					
	7.3.1	Egg Lecithin PAMPA Model (Roche Model) / 128					
	7.3.2	Hexadecane PAMPA Model (Novartis Model) / 129					
	7.3.3	Brush-Border Lipid Membrane (BBLM) PAMPA Model (Chugai Model) / 130					
	7.3.4	Hydrophilic Filter Membrane PAMPA Model (Aventis Model) / 131					
	7.3.5	Permeability-Retention-Gradient-Sink PAMPA Models (pION Models) / 131					
	7.3.6	Structure of Phospholipid Membranes / 131					
7.4		e for the Ideal In Vitro Artificial Membrane vility Model / 132					
	7.4.1	Lipid Compositions in Biological Membranes / 132					
	7.4.2	Permeability-pH Considerations / 132					
	7.4.3						
	7.4.4	Effects of Cosolvents, Bile Acids, and Other Surfactants / 135					
	7.4.5	Ideal Model Summary / 137					
7.5	Derivation	on of Membrane-Retention Permeability Equations					
	(One-Point Measurements, Physical Sinks, Ionization						
	Sinks, Binding Sinks, Double Sinks) / 137						
	7.5.1	Thin-Membrane Model (without Retention) / 139					
	7.5.2	Iso-pH Equations with Membrane Retention / 142					
		7.5.2.1 Without Precipitate in Donor Wells and without Sink Condition in Acceptor Wells / 143					
		7.5.2.2 Sink Condition in Acceptor Wells / 147					

7.5.2.3 Precipitate	i Sam	ple in	the	Donor	Compartment	/	147
---------------------	-------	--------	-----	-------	-------------	---	-----

- 7.5.3 Gradient pH Equations with Membrane Retention: Single and Double Sinks / 148
 - 7.5.3.1 Single Sink: Eq. (7.34) in the Absence of Serum Protein or Sink in Acceptor Wells / 150
 - 7.5.3.2 Double Sink: Eq. (7.34) in the Presence of Serum Protein or Sink in Acceptor Wells / 151
 - 7.5.3.3 Simulation Examples / 152
 - 7.5.3.4 Gradient pH Summary / 153
- 7.6 Permeability-Lipophilicity Relations / 153
 - 7.6.1 Nonlinearity / 153
- 7.7 PAMPA: 50+ Model Lipid Systems Demonstrated with
 - 32 Structurally Unrelated Drug Molecules / 156
 - 7.7.1 Neutral Lipid Models at pH 7.4 / 160
 - 7.7.1.1 DOPC / 166
 - 7.7.1.2 Olive Oil / 167
 - 7.7.1.3 Octanol / 168
 - 7.7.1.4 Dodecane / 168
 - 7.7.2 Membrane Retention (under Iso-pH and in the Absence of Sink Condition) / 169
 - 7.7.3 Two-Component Anionic Lipid Models with Sink Condition in the Acceptor Compartment / 171
 - 7.7.3.1 DOPC under Sink Conditions / 177
 - 7.7.3.2 DOPC with Dodecylcarboxylic Acid under Sink Conditions / 179
 - 7.7.3.3 DOPC with Phosphatidic Acid under Sink Conditions / 179
 - 7.7.3.4 DOPC with Phosphatidylglycerol under Sink Conditions / 181
 - 7.7.3.5 DOPC with Negative Lipids without Sink / 181
 - 7.7.4 Five-Component Anionic Lipid Model (Chugai Model) / 181
 - 7.7.5 Lipid Models Based on Lecithin Extracts from Egg and Soy / 183
 - 7.7.5.1 Egg Lecithin from Different Sources / 183
 - 7.7.5.2 Soy Lecithin and the Effects of Phospholipid Concentrations / 187
 - 7.7.5.3 Lipophilicity and Decrease in Permeability with Increased Phospholipid Content in Dodecane / 194
 - 7.7.5.4 Sink Condition to Offset the Attenuation of Permeability / 196

		7.7.5.5	Comparing Egg and Soy Lecithin Models / 198				
		7.7.5.6	Titrating a Suspension of Soy Lecithin / 198				
	7.7.6	Intrinsic Permeability, Permeability-pH Profiles, Unstirred					
			ayers (UWL), and the pH Partition Hypothesis / 199				
		7.7.6.1	Unstirred Water Layer Effect (Transport across				
			Barriers in Series and in Parallel) / 199				
		7.7.6.2	Determination of UWL Permeability using pH Dependence (pK_a^{flux}) Method / 200				
		7.7.6.3	Determination of UWL Permeabilities using				
			Stirring Speed Dependence / 205				
		7.7.6.4	Determination of UWL Permeabilities from Transport across Lipid-Free Microfilters / 207				
		7.7.6.5	Estimation of UWL Thickness from pH Measurements Near the Membrane Surface / 207				
		7.7.6.6	Prediction of Aqueous Diffusivities D_{aq} / 207				
		7.7.6.7	Intrinsic Permeability-log K _p Octanol-Water Relationship / 208				
		7.7.6.8	Iso-pH Permeability Measurements using Soy Lecithin–Dodecane–Impregnated Filters / 209				
		7.7.6.9					
		7.7.6.10	Collander Relationship between 2% DOPC and				
			20% Soy Intrinsic Permeabilities / 215				
	7.7.7	Evidence of Transport of Charged Species / 215					
		7.7.7.1	The Case for Charged-Species Transport from Cellular and Liposomal Models / 218				
		7.7.7.2	PAMPA Evidence for the Transport of Charged Drugs / 221				
	7.7.8		–Hydrogen Bonding and Ionic um Effects / 222				
	7.7.9	Effects of Cosolvent in Donor Wells / 226					
	7.7.10	Effects of Bile Salts in Donor Wells / 228					
	7.7.11	Effects o	f Cyclodextrin in Acceptor Wells / 228				
			f Buffer / 229				
	7.7.13	Effects of Stirring / 231					
			PAMPA: Intraplate and Interplate				
			cibility / 232				
	7.7.15	UV Spec	etral Data / 233				
7.8	The Opti	mized PA	MPA Model for the Gut / 236				

7.8.1 Components of the Ideal GIT Model / 236

RE	REFERENCES 25			
8	SUMMARY	AND SOME SIMPLE RULES	247	
	7.8.6	pION Sum- P_e PAMPA Model for Prediction of Human Intestinal Absorption (HIA) / 244		
	7.8.5	Novartis max- P_e PAMPA Model for Prediction of Human Intestinal Absorption (HIA) / 244		
	7.8.4	Caco-2 Models for Prediction of Human Intestinal Absorption (HIA) / 242		
	7.8.3	How Well Do PAMPA Measurements Predict the Human Jejunal Permeabilities? / 239		
	7.8.2	How Well Do Caco-2 Permeability Measurements Predict Human Jejunal Permeabilities? / 238		

INDEX

xiii

285

CONTENTS