

STATIC HEADSPACE-GAS CHROMATOGRAPHY

Theory and Practice

Second Edition

BRUNO KOLB LESLIE S. ETTRE

Contents

Pı	Preface		хi	
Pı	refac	ce to the First Edition	xv	
Li	List of Acronyms and Symbols			
1	Gen	neral Introduction	1	
	1.1	Principles of Headspace Analysis	1	
	1.2	Types of Headspace Analysis	3	
		1.2.1 Principles of Static HS-GC	4	
		1.2.2 Principles of Dynamic HS-GC	5	
		1.2.2.1 The Trap	5	
		1.2.2.2 The Water Problem	7	
		1.2.2.3 The Flow Problem	7	
		1.2.2.4 The Time Problem	8	
		1.2.2.5 Comparison of Static HS-GC with P&T	9	
		The Evolution of the HS-GC Methods	10	
	1.4	HS-GS Literature	12	
	1.5	Regulatory Methods Utilizing (Static) HS-GC	13	
		References	15	
2		oretical Background of HS-GC and	19	
	Its .	Its Applications		
	2.1	Basic Theory of Headspace Analysis	19	
	2.2	Basic Physicochemical Relationships	23	
	2.3	Headspace Sensitivity	25	
		2.3.1 Influence of Temperature on Vapor Pressure and Partition		
		Coefficient	26	
		2.3.1.1 Enhancement of Lower Boiling Compounds	28	
		2.3.2 Influence of Temperature on Headspace Sensitivity for		
		Compounds with Differing Partition Coefficients	29	
		2.3.3 Influence of Sample Volume on Headspace Sensitivity for		
		Compounds with Differing Partition Coefficients	34	
		2.3.3.1 Sample-to-Sample Reproducibility	36	

vi CONTENTS

		2.3.4	Changing the Sample Matrix by Varying the Activity		
			Coefficient	37	
	2.4		pace Linearity	42	
	2.5		cate Analyses	43	
	2.6		ble Headspace Extraction (MHE)	45	
			Principles of MHE	45	
			Theoretical Background of MHE	46	
		2.6.3	1	49	
			References	49	
3	The	Techr	nique of HS-GC	51	
	3.1	Sample Vials			
		3.1.1	Vial Types	53	
		3.1.2	Selection of the Vial Volume	54	
			Vial Cleaning	55	
		3.1.4	Wall Adsorption Effects	55	
	3.2	Caps		56	
		3.2.1	Pressure on Caps	58	
		3.2.2	Safety Closures	58	
	3.3	Septa		58	
		3.3.1	1 11	58	
		3.3.2	1	60	
		3.3.3	Should a Septum Be Pierced Twice?	62	
			3.3.3.1 Closed-Vial versus Open-Vial Sample		
			Introduction Technique	65	
	3.4		nostatting	66	
		3.4.1	Influence of Temperature	66	
	2.5		Working Modes	69	
	3.5		undamental Principles of Headspace Sampling Systems	70	
		3.5.1	Systems Using Gas Syringes	70	
		3.5.2	Solid Phase Microextraction (SPME)	73	
			3.5.2.1 Comparison of the Sensitivities in HS-SPME and Direct Static HS-GC	90	
		252		80	
		3.5.3 3.5.4	Balanced Pressure Sampling Systems	81	
		3.5.5	Pressure/Loop Systems Conditions for Pressuring Systems	83	
		3.5.6	Conditions for Pressurization Systems	84	
		3.3.0	Volume of the Headspace Gas Sample 3.5.6.1 Sample Volume with Gas Syringes	86 87	
			3.5.6.2 Sample Volume with Loop Systems	87 87	
			3.5.6.3 Sample Volume with the Balanced Pressure	0/	
			System Sample Volume with the Balanced Flessure	88	
	3.6	Use o	f Open-Tubular (Capillary) Columns	89	
			Properties of Open-Tubular Columns for Gas Samples	89	

CONTENTS vii

	3.6.2	Headspac	ce Sampling with Split or Splitless Introduction	90
	3.6.3		son of Split and Splitless Headspace Sampling	93
	3.6.4		padening During Sample Introduction	96
	3.6.5		of Temperature on Band Broadening	99
			Conclusions	101
	3.6.6		abination of Different Columns and Detectors	101
3.7			hniques in HS-GC	105
2	3.7.1		for Cryogenic Trapping	108
			Trapping by Cryogenic Condensation	109
		3.7.1.2		110
		3.7.1.3	Influence of Temperature on Cryogenic	
			Focusing	118
		3.7.1.4	Comparison of the Various Techniques of	
			Cryogenic Trapping	122
	3.7.2	Influence	of Water in Cryogenic HS-GC	124
			Water Removal in Static HS-GC	127
		3.7.2.2	Applications	129
	3.7.3	Enrichme	ent by Adsorption	134
			Water Removal from an Adsorption Trap	134
3.8	Specia		ues with the Balanced Pressure Systems	139
			ntation for MHE	139
	3.8.2	Backflusl		140
3.9		on HS-GC	_	143
•	3.9.1		ation in the Headspace Vial	145
			Methylation	146
			Esterification	146
			Transesterification	148
			Acetylation	149
			Carbonyl Compounds	149
	3.9.2		on HS-GC	149
	3.9.3		Reactions	153
	3.9.4	-	Analysis of Volatile Derivatives from Inorganic	
		Compour	· · · · · · · · · · · · · · · · · · ·	158
		Referenc		160
San	nple H	andling i	in HS-GC	165
	_	_		166
4.1	4.1.1	bration	mlse.	167
		Gas Sam		168
	4.1.2	Liquid S 4.1.2.1	•	168
		4.1.2.1	General Properties Reduction of the Equilibration Time for	100
		4.1.2.2	Reduction of the Equilibration Time for	169
	412	Calid Ca	Liquid Samples	171
4.2	4.1.3	Solid Sat on Approa		171
4.4	Soluli	on Abbroa	1CH	1/4

4

viii CONTENTS

	4.3	Sample	e Handling and Sample Introduction	177
		4.3.1	Gas Samples	177
		4.3.2	Liquid Samples	179
		4.3.3	Solid Samples	180
	4.4	Prepar	ation of Standard Solutions	181
		4.4.1	Preparation of a Standard Solution from a Liquid or	
			Solid Substance	182
		4.4.2	Preparation of a Standard Solution from a Gaseous	
			Compound	184
	4.5	Influer	nce of the Matrix	186
		4.5.1	Clean Matrix Is Available	187
		4.5.2	Matrix Effect Can Be Eliminated	187
			Artificial Matrix Can Be Prepared	189
	4.6	Metho	ds Aiming at Complete Evaporation of the Analyte	189
		4.6.1	The Total Vaporization Technique (TVT)	190
		4.6.2	The Full Evaporation Technique (FET)	191
		4.6.3	Calculation of the Extraction Yield in FET	194
		4.6.4	Comparison of Headspace Sensitivities	195
			References	195
5	Hea	dspac	e Methods for Quantitative Analysis	197
	5.1	Intern	al Normalization	199
	5.2	Intern	al Standard Method	202
		5.2.1	Blood Alcohol Determination	207
	5.3	Extern	nal Standard Method	207
	5.4	Standa	ard Addition Method	213
		5.4.1	Single Addition	213
			Handling of the Added Standard	214
			Determination by Multiple Additions	218
	5.5		ole Headspace Extraction (MHE)	221
			Principles of MHE	221
			Calibration in MHE	222
			5.5.2.1 External Standard	222
			5.5.2.2 Internal Standard	226
			5.5.2.3 Standard Addition	226
		5.5.3	The Use of Gaseous External Standards in MHE	227
			5.5.3.1 Correction for Sample Volume	228
		5.5.4	The Role of Quotient Q	229
			5.5.4.1 Relationship between Q and Pressures	229
			5.5.4.2 Value of Q in the Case of Total Vaporization	230
			5.5.4.3 The Relative Position of the MHE Plots as a	
			Function of Q	232
		5.5.5	The Correlation Coefficient r	234
		5.5.6	Evaluation of the Shape of the Regression Plot	234

CONTENTS ix

		5.5.7 Influence of K/B	236
	5.6	Analysis of Solid Samples (Adsorption Systems)	237
		5.6.1 Suspension Approach	238
		5.6.2 Surface-Modification Techniques	244
		5.6.3 Highly Adsorptive Solid Samples	250
	5.7		
	_	Varying Volumes	252
	5.8	Analysis of Gas Samples	253
		References	255
6	Met	thod Development in HS-GC	257
	6.1	General Guidelines	258
	6.2	Determination of the Residual Monomer Content of Polystyrene	
		Pellets	259
		6.2.1 First Approach: Use of Internal Standard with MHE	259
		6.2.2 Second Approach: Single Determination with Internal	
		Standard	262
		6.2.3 Third Approach: Use of External Standard with MHE	263
		6.2.4 Fourth Approach: Use of the Solution Approach	263
	6.3	Determination of Residual Solvents in a Printed Plastic Film	263
		6.3.1 First Approach: Use of External Standard with MHE	265
		6.3.2 Second Approach: Use of Standard Addition with MHE	266
		6.3.3 Third Approach: Use of Internal Standard	267
		6.3.4 Fourth Approach: Use of Standard Addition	267
	6.4	Determination of the Volatile Constituents of a Cathodic	260
		Electrolytic Plating Bath	268
		6.4.1 First Approach: Use of External Standard with MHE	268
		6.4.2 Second Approach: Dilution and Use of External Standard	269
7	Nor	nequilibrium Static Headspace Analysis	271
	7.1	Accelerated Analysis	272
	7.2	Heat-Sensitive Samples	274
		References	277
8	Qua	alitative Analysis by HS-GC	279
	8.1	The Use of HS-GC in "Fingerprinting"	282
	8.2	The Use of Headspace Sampling in Hyphenated Systems	282
	8.3	The Use of HS-GC in Microbiology	286
		References	291
9	Spe	cial Measurements	293
	9.1	Determination of Vapor Pressures	294
	9.2	Determination of Vapor Flessures Determination of Activity Coefficients	299

x CONTENTS

9.3	Determ	nination of Related Physicochemical Functions	302	
9.4	Determination of Phase Distribution (Partition Coefficient)			
		The Vapor-Phase Calibration (VPC) Method	305	
		The Phase Ratio Variation (PRV) Method	308	
	, <u>2</u>	9.4.2.1 Principles	309	
		9.4.2.2 Limitation of the PRV Method	311	
	9.4.3	Call Desiring		
	7.11.5	Coefficient	312	
		9.4.3.1 VPC/MHE Method	313	
		9.4.3.2 PRV/MHE Method	316	
9.5	Reacti	on Constant Measurements	316	
9.6		nination of Solute Solubility by MHE	319	
9.7				
7.1	9.7.1 Determination of Adsorption Isotherms			
	9.7.2			
	7.1.2	Volatile Analyte	321	
9.8	Valida	ation of Headspace Instrumentation: Investigation		
7.0	of Detector Linearity and Detection Limit			
		Definitions	325	
		Linear Range of the Detector	326	
		Precision of the Range	330	
			330	
		Minimum Detectability	332	
	References			

Index 335