

Engineering Materials 1

An Introduction to Properties, Applications and Design

Michael F Ashby David R H Jones

Contents

General introduction		xi
1.	Engineering materials and their properties 1.1 Introduction 1.2 Examples of materials selection	1 2 4
A.	Price and availability	15
2.	The price and availability of materials	17
	2.1 Introduction2.2 Data for material prices	18 18
	2.3 The use-pattern of materials	20
	2.4 Ubiquitous materials	21
	2.5 Exponential growth and consumption doubling-time	23
	2.6 Resource availability	24
	2.7 The future	26
	2.8 Conclusion	27
В.	The elastic moduli	29
3.	The elastic moduli	31
	3.1 Introduction	32
	3.2 Definition of stress	32
	3.3 Definition of strain	35
	3.4 Hooke's law	36 37
	3.5 Measurement of Young's modulus3.6 Data for Young's modulus	38
4	Bonding between atoms	43
т.	-	44
	4.1 Introduction4.2 Primary bonds	45
	4.3 Secondary bonds	48
	4.4 The condensed states of matter	51
	4.5 Interatomic forces	51
5.	Packing of atoms in solids	55
	5.1 Introduction	56
	5.2 Atom packing in crystals	56
	5.3 Close-packed structures and crystal energies	56

vi Contents

		Crystallography Plane indices	58 60
		Direction indices	61
		Other simple important crystal structures	62
		Atom packing in polymers	64
		Atom packing in inorganic glasses	65
	5.10 1	The density of solids	66
6.	The pl	hysical basis of Young's modulus	73
		ntroduction	74
		Moduli of crystals	74
		Rubbers and the glass transition temperature	76 70
		Composites	78
	6.5	Summary	81
7.	Case s	studies in modulus-limited design	85
		Case study 1: a telescope mirror—involving the	
		selection of a material to minimize the deflection of a	
		disc under its own weight.	86
		Case study 2: materials selection to give a beam of a	0.4
		given stiffness with minimum weight	91
		Case Study 3: materials selection to minimize the cost of a	0.7
	ļ	beam of given stiffness	93
C.	Yield	strength, tensile strength and ductility	97
8.	The y	ield strength, tensile strength and ductility	99
	8.1	Introduction	100
		Linear and nonlinear elasticity; anelastic behavior	100
		Load-extension curves for non-elastic (plastic) behavior	101
	8.4	True stress-strain curves for plastic flow	103
	8.5	Plastic work	106
	8.6	Tensile testing	10ϵ
	8.7	Data	107
	8.8	The hardness test	108
		Revision of the terms mentioned in this chapter,	
	;	and some useful relations	111
9.	Dislo	cations and yielding in crystals	119
	9.1	Introduction	120
	9.2	The strength of a perfect crystal	120
	9.3	Dislocations in crystals	122
	9.4	The force acting on a dislocation	128
		Other properties of dislocations	129

		Contents	vii
10.	Strengthening methods, and plasticity of polycrystals		131
	10.1 Introduction		132
	10.2 Strengthening mechanisms		132
	10.3 Solid solution hardening		132
	10.4 Precipitate and dispersion strengthening		133
	10.5 Work-hardening 10.6 The dislocation yield strength		135 135
	10.7 Yield in polycrystals		136
	10.8 Final remarks		139
11.	Continuum aspects of plastic flow		141
	11.1 Introduction		142
	11.2 The onset of yielding and the shear yield strength, k		142
	11.3 Analyzing the hardness test		144
	11.4 Plastic instability: necking in tensile loading		145
12.	Case studies in yield-limited design		153
	12.1 Introduction		154
	12.2 Case study 1: elastic design-materials for springs		154
	12.3 Case study 2: plastic design-materials for a pressure vessel 12.4 Case study 3: large-strain plasticity—rolling of metals		159 160
	12.4 Case study 5: large-strain plasticity—Tolling of metals		100
D. I	Fast fracture, brittle fracture and toughness		167
13.	Fast fracture and toughness		169
	13.1 Introduction		170
	13.2 Energy criterion for fast fracture		170
	13.3 Data for G_c and K_c		175
14.	Micromechanisms of fast fracture		181
	14.1 Introduction		182
	14.2 Mechanisms of crack propagation, 1: ductile tearing		182
	14.3 Mechanisms of crack propagation, 2: cleavage 14.4 Composites, including wood		184 186
	14.5 Avoiding brittle alloys		187
15.	Case studies in fast fracture		191
	15.1 Introduction		192
	15.2 Case study 1: fast fracture of an ammonia tank		192
	15.3 Case study 2: explosion of a perspex pressure window		
	during hydrostatic testing		195
	15.4 Case study 3: cracking of a polyurethane foam		100
	jacket on a liquid methane tank 15.5 Case study 4: collapse of wooden balcony railing		198 202
	stray it compact of the control turned		

viii Contents

16. Probabilistic fracture of brittle materials	209
16.1 Introduction	210
16.2 The statistics of strength and the Weibull distribution	on 212
16.3 Case study: cracking of a polyurethane foam jacket	on a
liquid methane tank	216
E. Fatigue failure	221
17. Fatigue failure	223
17.1 Introduction	224
17.2 Fatigue behavior of uncracked components	224
17.3 Fatigue behavior of cracked components	228
17.4 Fatigue mechanisms	230
18. Fatigue design	237
18.1 Introduction	238
18.2 Fatigue data for uncracked components	238
18.3 Stress concentrations	239
18.4 The notch sensitivity factor	240
18.5 Fatigue data for welded joints	241
18.6 Fatigue improvement techniques	242
18.7 Designing-out fatigue cycles	244
18.8 Checking pressure vessels for fatigue cracking	246
19. Case studies in fatigue failure	251
19.1 Introduction	252
19.2 Case study 1: high-cycle fatigue of an uncracked	
component — failure of a pipe organ mechanism	252
19.3 Case study 2: low-cycle fatigue of an uncracked	~ <0
component—failure of a submersible lifting eye	260
19.4 Case study 3: fatigue of a cracked	264
component—the safety of the Stretham engine	264
F. Creep deformation and fracture	271
20. Creep and creep fracture	273
20.1 Introduction	274
20.2 Creep testing and creep curves	277
20.3 Creep relaxation	280
20.4 Creep damage and creep fracture	282
20.5 Creep-resistant materials	283
21. Kinetic theory of diffusion	287
21.1 Introduction	288
21.2 Diffusion and Fick's law	289

	Contents ix
21.3 Data for diffusion coefficients21.4 Mechanisms of diffusion	293 294
 22. Mechanisms of creep, and creep-resistant materials 22.1 Introduction 22.2 Creep mechanisms: metals and ceramics 22.3 Creep mechanisms: polymers 22.4 Selecting materials to resist creep 	299 300 300 307 309
 23. The turbine blade — a case study in creep-limited design 23.1 Introduction 23.2 Properties required of a turbine blade 23.3 Nickel-based super-alloys 23.4 Engineering developments — blade cooling 23.5 Future developments: metals and metal-matrix composites 23.6 Future developments: high-temperature ceramics 23.7 Cost effectiveness 	311 312 313 314 318 319 321 322
G. Oxidation and corrosion	325
24. Oxidation of materials 24.1 Introduction 24.2 The energy of oxidation 24.3 Rates of oxidation 24.4 Data 24.5 Micromechanisms	327 328 328 329 332 332
 25. Case studies in dry oxidation 25.1 Introduction 25.2 Case study 1: making stainless alloys 25.3 Case study 2: protecting turbine blades 25.4 Joining operations: a final note 	337 338 338 339 343
26. Wet corrosion of materials 26.1 Introduction 26.2 Wet corrosion 26.3 Voltage differences as a driving force for wet oxidation 26.4 Rates of wet oxidation 26.5 Localized attack	345 346 346 347 350 350
 27. Case studies in wet corrosion 27.1 Introduction 27.2 Case study 1: the protection of underground pipes 27.3 Case study 2: materials for a lightweight factory roof 27.4 Case study 3: automobile exhaust systems 	357 358 358 360 363

x Contents

H. Friction, abrasion and wear	367
28. Friction and wear	369
28.1 Introduction	370
28.2 Friction between materials	370
28.3 Data for coefficients of friction	373
28.4 Lubrication	374
28.5 Wear of materials	373
28.6 Surface and bulk properties	373
29. Case studies in friction and wear	382
29.1 Introduction	382
29.2 Case study 1: the design of journal bearings	382
29.3 Case study 2: materials for skis and sledge runners	385
29.4 Case study 3: high-friction rubber	387
I. Designing with metals, ceramics, polymers and composites	391
30. Design with materials	393
30.1 Introduction	394
30.2 Design methodology	396
31. Final case study: materials and energy in car design	399
31.1 Introduction	400
31.2 Energy and cars	400
31.3 Ways of achieving energy economy	400
31.4 Material content of a car	402
31.5 Alternative materials	402
31.6 Production methods	408
31.7 Conclusions	410
Appendix 1 Symbols and formulae	411
Appendix 2 References	419
Index	421