

Lisa A. Seidman, Ph.D.

TABLE OF CONTENTS

PREFACE	X
ACKNOWLEDGMENTS	xi
INTRODUCTION	xii
UNIT I: BRIEF REVIEW OF SOME BASIC MATH TECHNIQUES	1
CHAPTER 1. EXPONENTS AND SCIENTIFIC NOTATION	3
Section 1.1 Exponents	4
Section 1.2 Exponents Where the Base is 10	7
Section 1.3 Scientific Notation	8
Section 1.4 More about Scientific Notation	11
Section 1.5 Calculations with Scientific Notation	14
CHAPTER 2. LOGARITHMS	19
Section 2.1 Common Logarithms	20
Section 2.2 Antilogarithms	22
Section 2.3 Natural Logarithms	23
Section 2.4 An Application of Logarithms: pH	23
CHAPTER 3. UNITS OF MEASUREMENT	29
Section 3.1 The Meaning of "Measurement"	30
Section 3.2 Units of Measurement	30
Section 3.3 Converting from One Metric Unit to Another Metric Unit	36
Section 3.4 Sizes of Biological Molecules	40
Section 3.5 Metric Prefixes for Large Numbers	46
CHAPTER 4. MEASUREMENTS AND SIGNIFICANT FIGURES	49
Section 4.1 Measurement Uncertainty and Significant Figures	50
Section 4.2 Indicating Whether Zeros are Significant	53
Section 4.3 Calculations and Significant Figures	54
CHAPTER 5. USING EQUATIONS TO DESCRIBE A RELATIONSHIP	61
Section 5.1 Introduction to Equations	62
Section 5.2 Units and Mathematical Operations	63
Section 5.3 An Application: Centrifugation	66

UNIT II: APPLICATIONS OF PROPORTIONAL RELATIONSHIPS	
IN THE BIOLOGY LABORATORY	75
CHAPTER 6. RATIOS AND PROPORTIONS	77
Section 6.1 Ratios	78
Section 6.2 Proportions	79
CHAPTER 7. UNIT CONVERSIONS	87
Section 7.1 Overview	88
Section 7.2 Proportion Method of Unit Conversion	88
Section 7.3 Unit Canceling Method of Unit Conversion	91
Section 7.4 Comparing Proportions and the Unit Canceling Methods of Unit Conversions	94
Section 7.5 Word Problems Requiring Multiple Steps	104
CHAPTER 8. DENSITY	109
Section 8.1 Density	110
CHAPTER 9. DOSAGES	113
Section 9.1 Calculations of Dosage	114
CHAPTER 10. PERCENTS	119
Section 10.1 Basic Manipulations Involving Percents	120
Section 10.2 An Application of Percents: Percent Error	125
CHAPTER 11. INTRODUCTION TO CONCENTRATION PROBLEMS	129
Section 11.1 Amount and Concentration are not Synonyms	130
Section 11.2 Preparing a Solution with the Right Concentration of Solute	133
Section 11.3 Solutions with the Same Concentration of Solute	136
Section 11.4 How Much Solute is in a Solution?	138
Section 11.5 More about the Term "Parts"	142
CHAPTER 12. PREPARING LABORATORY SOLUTIONS THAT	
CONTAIN ONE SOLUTE	145
Section 12.1 Preparing Laboratory Solutions	146
Section 12.2 Method 1: Concentration Expressed as a "Weight /Volume" Ratio	148
Section 12.3 Method 2: Concentration Expressed as a Percent	151
Section 12.4 Method 3: Concentration Expressed Using the Word "Parts"	157
Section 12.5 Method 4: Concentration Expressed in Terms of Molarity	161
Section 12.6 Variations on a Theme: Millimolar and Micromolar Solutions	171

Section 12.7	Variations on a Theme: Hydrates	172
	Variations on a Theme: Converting Between Different	
	Concentration Expressions	173
Section 12.9	Variations on a Theme: Reagents that are not Pure	174
CHAPTEI	R 13. DILUTIONS	179
Section 13.1	Introduction to Dilutions: Terminology	180
Section 13.2	Dilution, Expressed as a Fraction	183
Section 13.3	Dilutions and Proportional Relationships	184
Section 13.4	Calculations for Preparing a Dilution with a Particular Dilution	
	and a Particular Volume	186
Section 13.5	Calculating the Concentration of Solute after Diluting a Stock Solution	189
Section 13.6	Calculating the Concentration in a Stock Solution if you know	
	the Concentration in the Diluted Solution	193
Section 13.7	Dilution Series	196
Section 13.8	The $C_1V_1 = C_2V_2$ Equation	206
CHAPTER	14. PREPARING LABORATORY SOLUTIONS THAT CONTAIN	
MORE TH	AN ONE SOLUTE	213
Section 14.1	Introduction	214
Section 14.2	Example 1: SM Buffer	215
Section 14.3	Example 2: TÉ Buffer	218
UNIT III:	DESCRIBING RELATIONSHIPS WITH EQUATIONS	
AND GR		225
OTT - DODD		225
	R 15. GRAPHING LINEAR EQUATIONS	227
	Brief Review of the Basic Techniques of Graphing	228
	Graphing Straight Lines	229
	An Application of Graphing: Standard Curves and Quantitative Analysis	245
	Using Graphs to Display the Results of an Experiment	251
Section 15.5	A Statistical Method to Calculate the Line of Best Fit	258
CHAPTE	R 16. SPECTROPHOTOMETRY	265
Section 16.1	Introduction	266
Section 16.2	Transmittance and Absorbance Measurements in a Spectrophotometer	266
Section 16.3	Standard Curves and Spectrophotometry	271
	The Equation for the Calibration Line; Beer's Law	274
	Calculating the Absorptivity Constant	278
Section 16.6	Quantitative Analysis of a Sample	280

CHAPTE:	R 17. GRAPHING EXPONENTIAL EQUATIONS	287	
_	Exponential Relationships: Growth of Microorganisms	288	
Section 17.2	Semilog Paper	292	
Section 17.3	Section 17.3 The Decay of Radioisotopes		
UNIT IV	INTRODUCTION TO DESCRIPTIVE STATISTICS	303	
CHAPTER	18. DESCRIPTIVE STATISTICS: MEASURES OF CENTRAL TENDENCY	305	
Section 18.1	Introduction and Terminology	306	
Section 18.2	Measures of Central Tendency	308	
CHAPTE:	R 19. DESCRIPTIVE STATISTICS: MEASURES OF		
DISPERS	ION	315	
Section 19.1	Calculating the Range, Variance, and Standard Deviation	316	
Section 19.2	Distinguishing Between the Variance and		
	Standard Deviation of a Population and a Sample	318	
	The Coefficient of Variation (Relative Standard Deviation)	320	
Section 19.4	Application: Using Measures of Dispersion to Describe		
	the Variability of a Series of Measurements	325	
СНАРТЕ	R 20. GRAPHICAL METHODS OF DESCRIBING DATA	331	
Section 20.1	Describing Data: Frequency Distributions and Graphical Methods	332	
Section 20.2	The Normal Frequency Distribution	338	
UNIT V:	BIOTECHNOLOGY APPLICATIONS	349	
СНАРТЕ	R 21. COMMON CALCULATIONS RELATING TO ANIMAL		
CELL CU	LTURE TECHNIQUES	351	
Section 21.1	Introduction	352	
Section 21.2	Simple Cell Splits	353	
Section 21.3	The Concept of Cell Density	355	
Section 21.4	Using a Hemocytometer	358	
Section 21.5	Seeding Plates at Specific Cells Densities	362	
СНАРТЕ	R 22. AMOUNT AND CONCENTRATION OF NUCLEIC ACIDS	367	
Section 22.1	Introduction and Brief Review of Nucleic Acid Structure	368	
Section 22.2	Calculations and Manipulations of Nucleic Acids	370	
Section 22.3	Amount and Concentration	370	
Section 22.4	Units of "Bases"	372	

Section 22.5 Grams, Milligrams, Micrograms, Nanograms, and Picograms	373
Section 22.6 Moles, Millimoles, Micromoles, Nanomoles, and Picomoles	375
Section 22.7 Concentration Expressed as a Fraction	376
Section 22.8 Molar Concentrations	380
Section 22.9 Units of Daltons	385
Section 22.10 The Molecular Weights of Oligonucleotides	386
Section 22.11 The Molecular Weight of DNA Based on Fragment Lengths	388
Section 22.12 Spectrophotometric Analysis of DNA, RNA, and Proteins	394
CHAPTER 23. CALCULATIONS RELATING TO COMMON MOLECU	LAR
BIOLOGY TECHNIQUES	399
Section 23.1 Restriction Digests	400
Section 23.2 Setting up Restriction Digests	401
Section 23.3 Electrophoresis	408
Section 23.4 Analysis of the Size of Fragments in an Agarose Gel	409
Section 23.5 Determining how much DNA to Load onto an Agarose Gel	415
Section 23.6 Variation on a Theme: Deciding how much Protein to	
Load on a Polyacrylamide Gel	417
Section 23.7 Quantitation of DNA Using Gel Electrophoresis	420
Section 23.8 Transformation Efficiency	424
CHAPTER 24. THE POLYMERASE CHAIN REACTION	429
Section 24.1 Introduction and Overview of the Components of a PCR Reaction	430
Section 24.2 PCR is an Enzymatic Reaction	433
Section 24.3 Setting up a PCR Amplification: Overview	434
Section 24.4 Reaction Buffer	436
Section 24.5 Primers	437
Section 24.6 Nucleotides	442
Section 24.7 Enzyme	443
Section 24.8 Template	444
CHAPTER 25. CALCULATIONS RELATING TO PROTEIN PURIFICATION	N
AND ANALYSIS	447
Section 25.1 Introduction	448
Section 25.2 Assays of Total Protein	448
Section 25.3 Assays for Specific Proteins	454
Section 25.4 An Example of a Specific Enzyme Assay: The B-Galactosidase Assay	457
Section 25.5 Specific Activity	463
Section 25.6 Calculations of Purification Factor and Yield	466

Section 25.7 Summarizing the Results of a Purification Procedure Section 25.8 Footnote: the B-Galactosidase Formula	468 471
GLOSSARY	G-1