enemetrons and futonakt www.blackwellpublishing.com/allison

Fundamental Molecular Biology

Lizabeth A. Allison

Contents

Preface, xviii

1 The beginnings of molecular biology, 1

- 1.1 Introduction
- 1.2 Historical perspective

Insights into heredity from round and wrinkled peas: Mendelian genetics Insights into the nature of hereditary material: the transforming principle is DNA Creativity in approach leads to the one gene-one enzyme hypothesis. The importance of technological advances: the Hershey-Chase experiment A model for the structure of DNA: the DNA double helix

Chapter summary
Analytical questions
Suggestions for further reading

2 The structure of DNA, 13

- 2.1 Introduction
- 2.2 Primary structure: the components of nucleic acids

Five-carbon sugars

Nitrogenous bases

The phosphate functional group

Nucleosides and nucleotides

- 2.3 Significance of 5' and 3'
- 2.4 Nomenclature of nucleotides
- 2.5 The length of RNA and DNA
- 2.6 Secondary structure of DNA

Hydrogen bonds form between the bases

Base stacking provides chemical stability to the DNA double helix

Structure of the Watson-Crick DNA double helix

Distinguishing between features of alternative double-helical structures

DNA can undergo reversible strand separation

2.7 Unusual DNA secondary structures

Slipped structures

Cruciform structures

Triple helix DNA

Disease box 2.1 Friedreich's ataxia and triple helix DNA

2.8 Tertiary structure of DNA

Supercoiling of DNA

Topoisomerases relax supercoiled DNA

What is the significance of supercoiling in vivo?

Disease box 2.2 Topoisomerase-targeted anticancer drugs

Chapter summary

Analytical questions

Suggestions for further reading

3 Genome organization: from nucleotides to chromatin, 37

- 3.1 Introduction
- 3.2 Eukaryotic genome

Contents

Chromatin structure: historical perspective

Histones

Nucleosomes

Beads-on-a-string: the 10 nm fiber

The 30 nm fiber

Loop domains

Metaphase chromosomes

Alternative chromatin structures

3.3 Bacterial genome

3.4 Plasmids

3.5 Bacteriophages and mammalian DNA viruses

Bacteriophages

Mammalian DNA viruses

3.6 Organelle genomes: chloroplasts and mitochondria

Chloroplast DNA (cpDNA)

Mitochondrial DNA (mtDNA)

Disease box 3.1 Mitochondrial DNA and disease

3.7 RNA-based genomes

Eukaryotic RNA viruses

Retroviruses

Viroids

Other subviral pathogens

Disease box 3.2 Avian flu

Chapter summary

Analytical questions

Suggestions for further reading

4 The versatility of RNA. 54

4.1 Introduction

4.2 Secondary structure of RNA

Secondary structure motifs in RNA

Base-paired RNA adopts an A-type double helix

RNA helices often contain noncanonical base pairs

4.3 Tertiary structure of RNA

tRNA structure: important insights into RNA structural motifs Common tertiary structure motifs in RNA

4.4 Kinetics of RNA folding

4.5 RNA is involved in a wide range of cellular processes.

4.6 Historical perspective: the discovery of RNA catalysis

Tetrahymena group Lintron ribozyme

RNase P ribozyme

Focus box 4.1: The RNA world

4.7 Ribozymes catalyze a variety of chemical reactions

Mode of ribozyme action

Large ribozymes

Small ribozymes

Chapter summary

Analytical questions

Suggestions for further reading

5 From gene to protein, 79

- 5.1 Introduction
- 5.2 The central dogma
- 5.3 The genetic code

Translating the genetic code

The 21st and 22nd genetically encoded amino acids

Role of modified nucleotides in decoding

Implications of codon bias for molecular biologists

5.4 Protein structure

Primary structure

Secondary structure

Tertiary structure

Quaternary structure

Size and complexity of proteins

Proteins contain multiple functional domains

Prediction of protein structure

5.5 Protein function

Enzymes are biological catalysts

Regulation of protein activity by post-translational modifications

Allosteric regulation of protein activity

Cyclin-dependent kinase activation

Macromolecular assemblages

5.6 Protein folding and misfolding

Molecular chaperones

Ubiquitin-mediated protein degradation

Protein misfolding diseases

Disease box 5.1 Prions

Chapter summary

Analytical questions

Suggestions for further reading

6 DNA replication and telomere maintenance, 108

6.1 Introduction

6.2 Historical perspective

Insight into the mode of DNA replication: the Meselson-Stahl experiment Insight into the mode of DNA replication: visualization of replicating bacterial DNA

6.3 DNA synthesis occurs from $5' \rightarrow 3'$

6.4 DNA polymerases are the enzymes that catalyze DNA synthesis

Focus box 6.1 Bacterial DNA polymerases

6.5 Semidiscontinuous DNA replication

Leading strand synthesis is continuous

Lagging strand synthesis is discontinuous

6.6 Nuclear DNA replication in eukaryotic cells

Replication factories

Histone removal at the origins of replication

Prereplication complex formation at the origins of replication

Replication licensing: DNA only replicates once per cell cycle

Duplex unwinding at replication forks

RNA priming of leading strand and lagging strand DNA synthesis

Polymerase switching

Elongation of leading strands and lagging strands

Proofreading

Maturation of nascent DNA strands

Termination

Histone deposition

Focus box 6.2 The naming of genes involved in DNA replication

Disease box 6.1 Systemic lupus erythematosus and PCNA

6.7 Replication of organelle DNA

Models for mtDNA replication

Replication of cpDNA

Disease box 6.2 RNase MRP and cartilage-hair hypoplasia

6.8 Rolling circle replication

6.9 Telomere maintenance: the role of telomerase in DNA replication, aging, and cancer

Telomeres

Solution to the end replication problem

Maintenance of telomeres by telomerase

Other modes of telomere maintenance

Regulation of telomerase activity

Telomerase, aging, and cancer

Disease box 6.3 Dyskeratosis congenita: loss of telomerase function

Chapter summary

Analytical questions

Suggestions for further reading

7 DNA repair and recombination, 152

7.1 Introduction

7.2 Types of mutations and their phenotypic consequences

Transitions and transversions can lead to silent, missense, or nonsense mutations Insertions or deletions can cause frameshift mutations

Expansion of trinucleotide repeats leads to genetic instability

7.3 General classes of DNA damage

Single base changes

Structural distortion

DNA backbone damage

Cellular response to DNA damage

7.4 Lesion bypass

7.5 Direct reversal of DNA damage

7.6 Repair of single base changes and structural distortions by removal of DNA damage

Base excision repair

Mismatch repair

Nucleotide excision repair

Disease box 7.1 Hereditary nonpolyposis colorectal cancer: a defect in mismatch repair

7.7 Double-strand break repair by removal of DNA damage

Homologous recombination

Nonhomologous end-joining

Disease box 7.2 Xeroderma pigmentosum and related disorders: defects in nucleotide excision repair

Disease box 7.3 Hereditary breast cancer syndromes: mutations in *BRCA1* and *BRCA2*

Chapter summary
Analytical questions
Suggestions for further reading

8 Recombinant DNA technology and molecular cloning, 180

8.1 Introduction

8.2 Historical perspective

Insights from bacteriophage lambda (λ) cohesive sites Insights from bacterial restriction and modification systems The first cloning experiments

8.3 Cutting and joining DNA

Major classes of restriction endonucleases

Restriction endonuclease nomenclature

Recognition sequences for type II restriction endonucleases DNA ligase

Focus box 8.1 Fear of recombinant DNA molecules

8.4 Molecular cloning

Vector DNA

Choice of vector is dependent on insert size and application

Plasmid DNA as a vector

Bacteriophage lambda (λ) as a vector

Artificial chromosome vectors

Sources of DNA for cloning

Focus box 8.2 EcoRI: kinking and cutting DNA

Tool box 8.1 Liquid chromatography

8.5 Constructing DNA libraries

Genomic library

cDNA library

8.6 Probes

Heterologous probes

Homologous probes

Tool box 8.2 Complementary DNA (cDNA) synthesis

Tool box 8.3 Polymerase chain reaction (PCR)

Tool box 8.4 Radioactive and nonradioactive labeling methods

Tool box 8.5 Nucleic acid labeling

8.7 Library screening

Transfer of colonies to a DNA-binding membrane

Colony hybridization

Detection of positive colonies

8.8 Expression libraries

8.9 Restriction mapping

8.10 Restriction fragment length polymorphism (RFLP)

RFLPs can serve as markers of genetic diseases

Tool box 8.6 Electrophoresis

Tool box 8.7 Southern blot

Disease box 8.1 PCR-RFLP assay for maple syrup urine disease

8.11 **DNA sequencing**

Manual DNA sequencing by the Sanger "dideoxy" DNA method Automated DNA sequencing Chapter summary
Analytical questions
Suggestions for further reading

9 Tools for analyzing gene expression, 232

9.1 Introduction

9.2 Transient and stable transfection assays

9.3 Reporter genes

Commonly used reporter genes

Analysis of gene regulation

Purification and detection tags: fusion proteins

Tool box 9.1 Production of recombinant proteins

9.4 In vitro mutagenesis

Tool box 9.2 Fluorescence, confocal, and multiphoton microscopy

9.5 Analysis at the level of gene transcription: RNA expression and localization

Northern blot

In situ hybridization

RNase protection assay (RPA)

Reverse transcription-PCR (RT-PCR)

9.6 Analysis at the level of translation: protein expression and localization

Western blot

In situ analysis

Enzyme-linked immunosorbent assay (ELISA)

Tool box 9.3 Protein gel electrophoresis

Tool box 9.4 Antibody production

9.7 Antisense technology

Antisense oligonucleotides

RNA interference [RNAi]

9.8 Analysis of DNA-protein interactions

Electrophoretic mobility shift assay (EMSA)

DNase I footprinting

Chromatin immunoprecipitation (ChIP) assay

Disease box 9.1 RNAi therapies

9.9 Analysis of protein-protein interactions

Pull-down assay

Yeast two-hybrid assay

Coimmunoprecipitation assay

Fluorescence resonance energy transfer (FRET)

9.10 Structural analysis of proteins

X-ray crystallography

Nuclear magnetic resonance (NMR) spectroscopy

Cryoelectron microscopy

Atomic force microscopy (AFM)

9.11 Model organisms

Yeast: Saccharomyces cerevisiae and Schizosaccharomyces pombe

Worm: Caenorhabditis elegans Fly: Drosophila melanogaster

Fish: Danio rerio

Plant: *Arabidopsis thaliana* Mouse: *Mus musculus*

Frog: Xenopus laevis and Xenopus tropicalis

Chapter summary

Analytical questions

Suggestions for further reading

10 Transcription in prokaryotes, 278

- 10.1 Introduction
- 10.2 Transcription and translation are coupled in bacteria
- 10.3 Mechanism of transcription

Bacterial promoter structure

Structure of bacterial RNA polymerase

Stages of transcription

Proofreading

Direction of transcription around the E. coli chromosome

Focus box 10.1 Which moves - the RNA polymerase or the DNA?

10.4 Historical perspective: the Jacob-Monod operon model of gene regulation

The operon model led to the discovery of mRNA

Characterization of the Lac repressor

10.5 Lactose (lac) operon regulation

Lac operon induction

Basal transcription of the lac operon

Regulation of the lac operon by Rho

The lac promoter and lacZ structural gene are widely used in molecular biology research

10.6 Mode of action of transcriptional regulators

Cooperative binding of proteins to DNA

Allosteric modifications and DNA binding

DNA looping

10.7 Control of gene expression by RNA

Differential folding of RNA: transcriptional attenuation of the tryptophan operon

Riboswitches

Riboswitch ribozymes

Chapter summary

Analytical questions

Suggestions for further reading

11 Transcription in eukaryotes, 312

- 11.1 Introduction
- 11.2 Overview of transcriptional regulation
- 11.3 Protein-coding gene regulatory elements

Structure and function of promoter elements

Structure and function of long-range regulatory elements

Focus box 11.1 Position effect and long-range regulatory elements

Disease box 11.1 Hispanic thalassemia and DNase I hypersensitive sites

Focus box 11.2 Is there a nuclear matrix?

Focus box 11.3 Chromosomal territories and transcription factories

11.4 General (basal) transcription machinery

Components of the general transcription machinery

Structure of RNA polymerase II

General transcription factors and preinitiation complex formation

Mediator: a molecular bridge

11.5 **Transcription factors**

Transcription factors mediate gene-specific transcriptional activation or repression

Transcription factors are modular proteins

DNA-binding domain motifs

Transactivation domain

Dimerization domain

Focus box 11.4 Homeoboxes and homeodomains

Disease box 11.2 Greig cephalopolysyndactyly syndrome and Sonic hedgehog signaling

Disease box 11.3 Defective histone acetyltransferases in Rubinstein-Taybi syndrome

11.6 Transcriptional coactivators and corepressors

Chromatin modification complexes

Linker histone variants

Chromatin remodeling complexes

Focus box 11.5 Is there a histone code?

11.7 Transcription complex assembly: the enhanceosome model versus the "hit and run" model

Order of recruitment of various proteins that regulate transcription

Enhanceosome model

Hit and run model

Merging of models

11.8 Mechanism of RNA polymerase II transcription

Promoter clearance

Elongation: polymerization of RNA

Proofreading and backtracking

Transcription elongation through the nucleosomal barrier

Disease box 11.4 Defects in Elongator and familial dysautonomia

11.9 Nuclear import and export of proteins

Karyopherins

Nuclear localization sequences (NLSs)

Nuclear export sequences (NESs)

Nuclear import pathway

Nuclear export pathway

Focus box 11.6 The nuclear pore complex

Focus box 11.7 Characterization of the first nuclear localization sequence

11.10 Regulated nuclear import and signal transduction pathways

Regulated nuclear import of NF-kB

Regulated nuclear import of the glucocorticoid receptor

Chapter summary

Analytical questions

Suggestions for further reading

12 Epigenetics and monoallelic gene expression, 392

12.1 Introduction

12.2 Epigenetic markers

Cytosine DNA methylation marks genes for silencing

Stable maintenance of histone modifications

Disease box 12.1 Cancer and epigenetics

12.3 Genomic imprinting

Establishing and maintaining the imprint

Mechanisms of monoallelic expression

Genomic imprinting is essential for normal development

Origins of genomic imprinting

Disease box 12.2 Fragile X mental retardation and aberrant DNA methylation

Disease box 12.3 Genomic imprinting and neurodevelopmental disorders

12.4 X chromosome inactivation

Random X chromosome inactivation in mammals

Molecular mechanisms for stable maintenance of X chromosome inactivation

Is there monoallelic expression of all X-linked genes?

12.5 Phenotypic consequences of transposable elements

Historical perspective: Barbara McClintock's discovery of mobile genetic elements in maize

DNA transposons have a wide host range

DNA transposons move by a "cut and paste" mechanism

Retrotransposons move by a "copy and paste" mechanism

Some LTR retrotransposons are active in the mammalian genome

Non-LTR retrotransposons include LINEs and SINEs

Tool box 12.1 Transposon tagging

Disease box 12.4 Jumping genes and human disease

12.6 Epigenetic control of transposable elements

Methylation of transposable elements

Heterochromatin formation mediated by RNAi and RNA-directed DNA methylation

12.7 Allelic exclusion

Yeast mating-type switching and silencing

Antigen switching in trypanosomes

V(D)J recombination and the adaptive immune response

Disease box 12.5 Trypanosomiasis: human "sleeping sickness"

Focus box 12.1 Did the V(D)J system evolve from a transposon?

Chapter summary

Analytical questions

Suggestions for further reading

13 RNA processing and post-transcriptional gene regulation, 452

13.1 Introduction

13.2 RNA splicing: historical perspective and overview

13.3 Group I and group II self-splicing introns

Group Lintrons require an external G cofactor for splicing

Group II introns require an internal bulged A for splicing

Mobile group I and II introns

Focus box 13.1 Intron-encoded small nucleolar RNA and "inside-out" genes

13.4 Archael and nuclear transfer RNA introns

Archael introns are spliced by an endoribonuclease

Some nuclear tRNA genes contain an intron

13.5 Cotranscriptional processing of nuclear pre-mRNA

Addition of the 5'-7-methylguanosine cap

Termination and polyadenylation

Splicing

Disease box 13.1 Oculopharyngeal muscular dystrophy: trinucleotide repeat expansion in a poly(A)-binding protein gene

Disease box 13.2 Spinal muscular atrophy: defects in snRNP biogenesis

Disease box 13.3 Prp8 gene mutations cause retinitis pigmentosa

13.6 Alternative splicing

Effects of alternative splicing on gene expression

Contents

Regulation of alternative splicing

Focus box 13.2 The DSCAM gene: extreme alternative splicing

13.7 *Trans*-splicing

Discontinuous group II trans-splicing

Spliced leader trans-splicing

tRNA trans-splicing

Focus box 13.3 Apoptosis

13.8 RNA editing

RNA editing in trypanosomes

RNA editing in mammals

Disease box 13.4 Amyotrophic lateral sclerosis: a defect in RNA editing?

13.9 Base modification guided by small nucleolar RNA molecules

13.10 Post-transcriptional gene regulation by microRNA

Historical perspective: the discovery of miRNA in *Caenorhabditis elegans* Processing of miRNAs

miRNAs target mRNA for degradation and translational inhibition

13.11 RNA turnover in the nucleus and cytoplasm

Nuclear exosomes and quality control

Quality control and the formation of nuclear export-competent RNPs Cytoplasmic RNA turnover

Chapter summary

Analytical questions

Suggestions for further reading

14 The mechanism of translation, 512

14.1 Introduction

14.2 Ribosome structure and assembly

Structure of ribosomes

The nucleolus

Ribosome biogenesis

Focus box 14.1 What is "S"?

14.3 Aminoacyl-tRNA synthetases

Aminoacyl-tRNA charging

Proofreading activity of aminoacyl-tRNA synthetases

14.4 Initiation of translation

Ternary complex formation and loading onto the 40S ribosomal subunit

Loading the mRNA on the 40S ribosomal subunit

Scanning and AUG recognition

Joining of the 40S and 60S ribosomal subunits

Tool box 14.1 Translation toeprinting assays

Disease box 14.1 Eukaryotic initiation factor 2B and vanishing white matter

14.5 Elongation

Decodina

Peptide bond formation and translocation

Peptidyl transferase activity

Events in the ribosome tunnel

14.6 Termination

14.7 Translational and post-translational control

Phosphorylation of eIF2 α blocks ternary complex formation eIF2 α phosphorylation is mediated by four distinct protein kinases

Chapter summary
Analytical questions
Suggestions for further reading

15 Genetically modified organisms: use in basic and applied research, 545

15.1 Introduction

15.2 Transgenic mice

How to make a transgenic mouse

Inducible transgenic mice

Focus box 15.1 Oncomouse patent

15.3 Gene-targeted mouse models

Knockout mice

Knockin mice

Knockdown mice

Conditional knockout and knockin mice

Focus box 15.2 A mouse for every need

15.4 Other applications of transgenic animal technology

Transgenic primates

Transgenic livestock

Gene pharming

Focus box 15.3 Transgenic artwork: the GFP bunny

15.5 Cloning by nuclear transfer

Genetic equivalence of somatic cell nuclei: frog cloning experiments

Cloning of mammals by nuclear transfer

"Breakthrough of the year": the cloning of Dolly

Method for cloning by nuclear transfer

Source of mtDNA in clones

Why is cloning by nuclear transfer inefficient?

Applications of cloning by nuclear transfer

Focus box 15.4 Genetically manipulated pets

15.6 Transgenic plants

T-DNA-mediated gene delivery

Electroporation and microballistics

Focus box 15.5 Genetically modified crops: are you eating genetically engineered tomatoes?

Chapter summary

Analytical questions

Suggestions for further reading

16 Genome analysis: DNA typing, genomics, and beyond, 581

16.1 Introduction

16.2 DNA typing

DNA polymorphisms: the basis of DNA typing

Minisatellite analysis

Polymerase chain reaction-based analysis

Short tandem repeat analysis

Mitochondrial DNA analysis

Y chromosome analysis

Randomly amplified polymorphic DNA (RAPD) analysis

Focus box 16.1 DNA profiles of marijuana

Focus box 16.2 Nonhuman DNA typing

16.3 Genomics and beyond

What is bioinformatics?

Genomics

Proteomics

The age of "omics"

16.4 The Human Genome Project

Clone by clone genome assembly approach

Whole-genome shotgun approach

Rough drafts versus finished sequences

16.5 Other sequenced genomes

What is a gene and how many are there in the human genome?

Focus box 16.3 Comparative analysis of genomes: insights from pufferfish and chickens

16.6 High-throughput analysis of gene function

DNA microarrays

Protein arrays

Mass spectrometry

16.7 Single nucleotide polymorphisms

Focus box 16.4 The nucleolar proteome

Disease box 16.1 Mapping disease-associated SNPs: Alzheimer's disease

Chapter summary

Analytical questions

Suggestions for further reading

17 Medical molecular biology, 618

17.1 Introduction

17.2 Molecular biology of cancer

Activation of oncogenes

Inactivation of tumor suppressor genes

Inappropriate expression of microRNAs in cancer

Chromosomal rearrangements and cancer

Viruses and cancer

Chemical carcinogenesis

Focus box 17.1 How cancer cells metastasize: the role of Src

Disease box 17.1 Knudson's two-hit hypothesis and retinoblastoma

Disease box 17.2 Cancer gene therapy: a "magic bullet?"

Focus box 17.2 The discovery of p53

Disease box 17.3 Human papilloma virus (HPV) and cervical cancer

17.3 Gene therapy

Vectors for somatic cell gene therapy

Enhancement genetic engineering

Gene therapy for inherited immunodeficiency syndromes

Cystic fibrosis gene therapy

HIV-1 gene therapy

Focus box 17.3 Retroviral-mediated gene transfer: how to make a "safe vector"

Focus box 17.4 The first gene therapy fatality

Focus box 17.5 HIV-1 life cycle

17.4 Genes and human behavior

Aggressive, impulsive, and violent behavior

Schizophrenia susceptibility loci

Content

Chapter summary
Analytical questions
Suggestions for further reading

Glossary, 668 Index, 711