Ruminant physiology

Digestion, metabolism and impact of nutrition on gene expression, immunology and stress

edited by: K. Sejrsen T. Hvelplund M.O. Nielsen

Table of contents

Foreword	7
Part I: Rumen fermentation	
Characterisation and quantification of the microbial populations of the rumen	19
J.L. Firkins and Z. Yu	
Abstract	19
Introduction	19
Enumerating and characterising prokaryotic and protozoal populations by culture-	
based and microscopic methods	21
Characterising bacterial populations by molecular biology techniques	24
Observations from cloning and sequencing studies for bacteria	26
Quantitative issues influencing the interpretation of bacterial clone libraries	30
Quantification of microbial populations in the rumen	32
Protozoal ecology Protozoal interactions with <i>Bacteria</i> and <i>Archaea</i>	36
Conclusions	42
Acknowledgements	45 46
References	46
References	40
The role of thermodynamics in the control of ruminal fermentation	55
E.M. Ungerfeld and R.A. Kohn	
Abstract	55
Introduction	55
Background	58
Thermodynamics and kinetics of H sinks	64
Thermodynamics and kinetics of VFA interconversion	72
Conclusions	80
References	81
Digestion and passage of fibre in ruminants	87
P. Huhtanen, S. Ahvenjärvi, M.R. Weisbjerg and P. Nørgaard	
Abstract	87
Introduction	87
Site of digestion	89
Digestion kinetics	92
Parameter estimates of intrinsic rate and extent of digestion	92
The in situ method	93
Effect of intrinsic characteristics on digestion kinetics	98
Effect of extrinsic characteristic on digestion kinetics	100
Validity of digestion kinetic methods	104
Passage kinetics	105

Methodology	106
Particle dynamics	110
Intrinsic and extrinsic factors influencing passage kinetics	114
Integrated models of cell wall digestion in the rumen	119
Conclusions	125
References	126
Part II: Absorption mechanisms	
Transport systems in the epithelia of the small and large intestines	139
G. Breves and S. Wolffram	
Abstract	139
Introduction	139
Carbohydrate digestion and monosaccharide absorption	140
Rate of flow of starch into the small intestines	140
Enzymatic hydrolysis	141
Epithelial transport of sugars	141
Gastrointestinal absorption of amino acids and peptides	143
Absorption of amino asids	144
Absorption of tri- and dipeptides	147
Intestinal phosphate (P _i) absorption	149
Concluding remarks	150
References	151
Urea transporters and urea recycling in ruminants	155
J.C. Marini, J.M. Sands and M.E. Van Amburgh	
Abstract	155
Introduction	155
Urea excretion and its regulation by the kidney	156
Urea entry into the gastrointestinal tract	161
Future work and summary	163
Acknowledgements	164
References	164
Ruminal SCFA absorption: channelling acids without harm G. Gäbel and J.R. Aschenbach	173
Abstract	173
Introduction	173
Quantitative aspects of intraruminal acid production and their final fate	174
Intraruminal proton release and buffering	174
Mechanisms of acid elimination from the ruminal content	174
Intraepithelial metabolism of SCFA	176
Disadvantages vs. advantages of intraepithelial SCFA breakdown	177
Acid-base balance in the ruminal epithelial cell	180
pH _i regulating mechanisms and extracellular conditions	180
i i U	

Systemic vs. luminal release of protons and acids	183
Functional adaptation of the ruminal epithelium can stabilise the whole system	186
Conclusions	188
Acknowledgements	189
References	189
Part III: Splachnic metabolism	
Splanchnic metabolism of long-chain fatty acids in ruminants	199
J.K. Drackley and J.B. Andersen	
Abstract	199
Introduction	199
Role of PDV in absorption of dietary LCFA	200
Role of splanchnic organs in coordination and use of LCFA	201
Secretion of TAG as VLDL vs. TAG accumulation in liver	205
Control of hepatic ß-oxidation of NEFA	208
Cellular partitioning of hepatic NEFA metabolism	211
Can hepatic capacity for NEFA ß-oxidation be manipulated?	214
Do PDV adipose tissues influence liver metabolism of LCFA?	216
Conclusions and future perspectives	217
References	217
Splanchnic amino acid metabolism in ruminants	225
C.K. Reynolds	
Abstract	225
Introduction	226
Measurement of splanchnic amino absorption and metabolism	227
Metabolism of amino acids by the portal-drained viscera	228
Liver metabolism of amino acids	234
Metabolic impact of nonprotein nitrogen metabolism	241
Conclusions	243
References	244
Splanchnic metabolism of short-chain fatty acids in the ruminant	249
N.B. Kristensen and D.L. Harmon	
Abstract	249
Introduction	249
Low first pass sequestration of acetate and propionate by ruminal epithelium	250
Large first pass sequestration of butyrate and valerate by the ruminal epithelium	252
Is the ruminal epithelium a specialized butyrate scavenger?	253
Hepatic SCFA metabolism	254
Acyl-CoA synthetases in SCFA metabolism	258
Perspectives	260
Acknowledgements	260
References	260

Part IV: Lactation and reproduction physiology

Patterns and putative regulatory mechanisms of high-affinity glutamate transporter	
expression by ruminants	269
J.C. Matthews and G.L. Sipe	
Abstract	269
Introduction	269
Glutamate transport systems	271
System X-AG transport proteins	271
Importance of system X-AG transport capacity in support of tissue function	272
Characterized and putative regulatory mechanisms of system X AG transporter	
expression and function	277
Modulation of chlortetracycline on cattle carcass quality and expression of system	
X AG transporters and glutamine synthetase	284
Conclusions	286
Acknowledgements	286
References	286
Characterisation and nutritional regulation of the main lipogenic genes in the ruminant	
lactating mammary gland	295
L. Bernard, C. Leroux and Y. Chilliard	
Abstract	295
Introduction	295
Origin of milk fatty acids	296
Characterisation of the main lipogenic genes and tools for studying gene expression	
and regulation	298
Effect of dietary factors on lipogenic genes expression in the mammary gland	303
Molecular mechanisms involved in nutritional regulation of gene expression	310
Conclusions and perspectives	316
Acknowledgements	318
References	318
Roles of growth hormone and leptin in the periparturient dairy cow	327
Y.R. Boisclair, S.R. Wesolowski, J.W. Kim and R.A. Ehrhardt	
Abstract	327
Introduction	327
Growth hormone	328
Leptin	330
Conclusions	336
Acknowledgements	336
References	336

Part V: Lactation and reproduction physiology

Prenatal nutrition, letal programming and opportunities for farm animal research	347
B.H. Breier	2.45
Abstract	347
Introduction	348
Maternal and fetal responses to reduced maternal nutrition	349
Influence of early life nutrition on postnatal growth and metabolism	350
Animal models of nutritional programming	351
Interactions between prenatal and postnatal nutrition	352
Endocrine and metabolic mechanisms	354
Fetal programming - opportunities for research in farm animals	355
Conclusion	357
Acknowledgements	357
References	358
Mammary cell turnover: relevance to lactation persistency and dry period management	363
A.V. Capuco, E. Annen, A.C. Fitzgerald, S.E. Ellis and R.J. Collier	
Abstract	363
Introduction	363
Concept of cell turnover	364
Identification of progenitor cells	365
Population dynamics during lactation	368
Population dynamics during a 60-day dry period	373
Implications of cell turnover to shortened dry periods	376
Conclusions and perspectives	383
References	383
Milk fat depression: concepts, mechanisms and management applications J.M. Griinari and D.E. Bauman	389
Abstract	389
Introduction	389
Milk fat depression	390
The effect of trans-10, cis-12 CLA on milk fat synthesis	396
Nutritional challenges of cows in early lactation	401
Milk fat reduction and associated lactation responses	403
Conclusions	408
References	409

Part VI: Nutrition and immunology

Endocrine effects on immune function: defining opportunities based on knowledge	
from growing calf and periparturient animal models	421
T. Elsasser, K.L. Ingvartsen, S. Kahl, and A.V. Capuco	
Abstract	421
Introduction	421
Brief overview of the periparturient phenomenon	422
Hormonal maintenance of pregnancy and the impact of fetal-maternal tolerance on	
natural immunosuppression	423
Somatotropic axis modulation of immune function	425
Temporal, state-dependant, and inter-animal variability factors in the endocrine	
control of immune function	427
Newer findings on the impact of GH on localized immune function/nitric oxide	
production	431
The endocrine - immune gradient and integration of priority signals	437
Adrenomedullin - a novel bridge in the endocrine regulation of immune system	
function	441
Conclusions	445
References	446
Energy and protein effects on the immune system	455
M.E. Kehrli, Jr., J.D. Neill, C. Burvenich, J.P. Goff, J.D. Lippolis, T.A. Reinhardt and B.J. No	mnecke
Abstract	455
Introduction	455
Immune function status of periparturient dairy cattle	456
Energy and protein status of periparturient dairy cattle	459
Energy and protein requirements of the immune system	460
Influence energy and protein status on immune function	462
Conclusions	465
References	465
	473
Vitamin and trace mineral effects on immune function of ruminants	4/3
W.P. Weiss and J.W. Spears	473
Abstract	473
Introduction	474
Factors affecting immune response to vitamin and mineral supply	475
Chromium	477
Copper	480
Selenium and vitamin E	483
Vitamin A and B-carotene	485
Zinc	486 486
Other minerals and vitamins	486
Conclusions	487
References	40/

Part VII: Nutrition and stress physiology

Feeding management and stress in calves	499
A.M. de Passillé and J. Rushen	
Abstract	499
Introduction	499
Deprivation of sucking behaviour	499
Milk quantity	505
Individual versus group housing	507
Conclusions	508
Acknowledgements	508
References	509
Effects of nutrition on stress reactivity	511
L. Munksgaard, M.S. Herskin, P. Løvendahl and J.B. Andersen	
Abstract	511
Introduction	511
Changes in HPA-axis activity induced by feeding and fasting	512
Baseline cortisol levels in relation to diet composition and total energy intake	513
HPA-axis reactivity to acute stress is modulated by energy intake	514
Diet composition may affect serotonin at CNS level	516
Can changes in the level of serotonin and CRF regulation at the CNS level affect	
behavioural responses to stress?	516
How do diet composition and energy intake affect behaviour?	517
Effects of composition and energy density of the diet on time budgets	517
Conclusion	520
Acknowledgements	521
References	521
Part VIII: Human health aspects	
Milk fatty acids and human health: potential role of conjugated linoleic acid and trans	
fatty acids	529
D.E. Bauman, A.L. Lock, B.A. Corl, C. Ip, A.M. Salter and P.W. Parodi	
Abstract	529
Introduction	529
The biology of CLA	531
Ruminant dimension	533
Use of models to investigate effects of CLA on disease	538
Functional food implications of CLA for disease prevention in humans	544
Conclusion	550
References	551

Does cow's milk enhance linear growth: evidence from developing and industrialized	
countries	563
C. Hoppe, C. Mølgaard and K. F. Michaelsen	
Abstract	563
Introduction	563
Populations with marginal or poor nutritional status	563
Well-nourished populations	564
Own studies	565
Breast milk and infant formula	567
Milk and IGF-I in adults	568
Possible mechanisms	568
Linear growth and non-communicable diseases	569
IGF-I and non-communicable diseases	569
Conclusion	569
References	570
Part IX: Workshop reports	
The use of ruminants in less developed counties and the priorities within ruminant physiology research to assist in development	
Chaired by J. Madsen and T. Hvelplund	
Discussion paper — Ruminants in agricultural development: where is the future for	575
animal physiologists?	313
J. Madsen	
Methods used for studying particle size and digesta flow	
Chaired by D.P. Poppi and A.de Vega	
Discussion paper 1 — Use of image analysis for measuring particle size in feed,	F70
digesta and faeces	579
P. Nørgaard	F0=
Discussion paper 2 — Measurement of digesta flow entering the omasal canal	587
S. Ahvenjärvi	
Index	591
AHUÇA	