

## STRUCTURAL STEEL DESIGN

FOURTH EDITION

JACK C. McCORMAC

## **Contents**

| Preface      |                                                   | iii |
|--------------|---------------------------------------------------|-----|
| CHAPTER 1 In | troduction to Structural Steel Design             | 1   |
| 1.           | Advantages of Steel as a Structural Material      | 1   |
| 1.           | 2 Disadvantages of Steel as a Structural Material | 3   |
| 1.           | 3 Early Uses of Iron and Steel                    | 4   |
| 1.           | 4 Steel Sections                                  | 7   |
| 1.           | 5 Metric Units                                    | 12  |
| 1.           | 6 Cold-Formed Light-Gage Steel Shapes             | 12  |
| 1.           | 7 Stress-Strain Relationships in Structural Steel | 13  |
| 1.           | 8 Modern Structural Steels                        | 18  |
| 1.           | 9 Uses of High-Strength Steels                    | 23  |
| 1.           | 10 Measurement of Toughness                       | 24  |
| 1.           | 11 Jumbo Sections                                 | 25  |
| 1.           | 12 Lamellar Tearing                               | 26  |
| 1.           | 13 Furnishing of Structural Steel                 | 26  |
| 1.           | 14 The Work of the Structural Designer            | 30  |
| 1.           | 15 Responsibilities of the Structural Designer    | 30  |
| 1.           | 16 Economical Design of Steel Members             | 31  |
| 1.           | 17 Failure of Structures                          | 34  |
| 1.           | 18 Handling and Shipping Structural Steel         | 36  |
| 1.           | 19 Calculation Accuracy                           | 36  |
| 1.           | 20 Computers and Structural Steel Design          | 36  |
| CHAPTER 2 Sp | ecifications, Loads, and Methods of Design        | 38  |
| 2.           | 1 Specifications and Building Codes               | 38  |
| 2.           | 2 Loads                                           | 40  |
| 2.           | 3 Dead Loads                                      | 40  |
| 2.           | 4 Live Loads                                      | 41  |
| 2.           | 5 Environmental Loads                             | 44  |

|           | 2.6    | Load and Resistance Factor Design (LRFD)               |     |
|-----------|--------|--------------------------------------------------------|-----|
|           |        | and Allowable Strength Design (ASD)                    | 50  |
|           | 2.7    | Nominal Strengths                                      | 51  |
|           | 2.8    | Shading                                                | 51  |
|           | 2.9    | Computation of Loads for LRFD and ASD                  | 51  |
|           | 2.10   | Computing Combined Loads with LRFD Expressions         | 52  |
|           | 2.11   | Computing Combined Loads with ASD Expressions          | 56  |
|           | 2.12   | Two Methods of Obtaining an Acceptable Level of Safety | 57  |
|           | 2.13   | Discussion of Sizes of Load Factors and Safety Factors | 58  |
|           | 2.14   | Author's Comment                                       | 59  |
|           | 2.15   | Problems for Solution                                  | 59  |
| CHAPTER 3 | Analys | sis of Tension Members                                 | 60  |
|           | 3.1    | Introduction                                           | 60  |
|           | 3.2    | Nominal Strengths of Tension Members                   | 63  |
|           | 3.3    | Net Areas                                              | 65  |
|           | 3.4    | Effect of Staggered Holes                              | 67  |
|           | 3.5    | Effective Net Areas                                    | 72  |
|           | 3.6    | Connecting Elements for Tension Members                | 82  |
|           | 3.7    | Block Shear                                            | 84  |
|           | 3.8    | Problems                                               | 92  |
| CHAPTER 4 | Design | of Tension Members                                     | 101 |
|           | 4.1    | Selection of Sections                                  | 101 |
|           | 4.2    | Built-Up Tension Members                               | 109 |
|           | 4.3    | Rods and Bars                                          | 113 |
|           | 4.4    | Pin-Connected Members                                  | 118 |
|           | 4.5    | Design for Fatigue Loads                               | 120 |
|           | 4.6    | Problems                                               | 123 |
| CHAPTER 5 | Introd | uction to Axially Loaded Compression Members           | 127 |
|           | 5.1    | General                                                | 127 |
|           | 5.2    | Residual Stresses                                      | 130 |
|           | 5.3    | Sections Used for Columns                              | 131 |
|           | 5.4    | Development of Column Formulas                         | 135 |
|           | 5.5    | The Euler Formula                                      | 137 |
|           | 5.6    | End Restraint and Effective Lengths of Columns         | 139 |
|           | 5.7    | Stiffened and Unstiffened Elements                     | 142 |
|           | 5.8    | Long, Short, and Intermediate Columns                  | 146 |
|           | 5.9    | Column Formulas                                        | 147 |
|           | 5.10   | Maximum Slenderness Ratios                             | 149 |

|           |         |                                                    | Contents | VII |
|-----------|---------|----------------------------------------------------|----------|-----|
|           | 5.11    | Example Problems                                   |          | 149 |
|           | 5.12    | Problems                                           |          | 156 |
| CHAPTER 6 | Design  | of Axially Loaded Compression Members              |          | 162 |
|           | 6.1     | Introduction                                       |          | 162 |
|           | 6.2     | AISC Design Tables                                 |          | 165 |
|           | 6.3     | Column Splices                                     |          | 170 |
|           | 6.4     | Built-Up Columns                                   |          | 173 |
|           | 6.5     | Built-Up Columns with Components                   |          |     |
|           |         | in Contact with each Other                         |          | 174 |
|           | 6.6     | Connection Requirements for Built-Up Columns       |          |     |
|           |         | Whose Components are in Contact with each Other    |          | 175 |
|           | 6.7     | Built-Up Columns with Components not               |          | 101 |
|           | 6.0     | in Contact with each Other                         |          | 181 |
|           | 6.8     | Single-Angle Compression Members                   |          | 186 |
|           | 6.9     | Sections Containing Slender Elements               |          | 188 |
|           | 6.10    | Flexural-Torsional Buckling of Compression Members |          | 190 |
|           | 6.11    | Problems                                           |          | 195 |
| CHAPTER 7 | Design  | of Axially Loaded Compression Members (Continued)  |          |     |
|           |         | lumn Base Plates                                   |          | 199 |
|           | 7.1     | Further Discussion of Effective Lengths            |          | 199 |
|           | 7.2     | Frames Meeting Alignment Chart Assumptions         |          | 204 |
|           | 7.3     | Frames not Meeting Alignment Chart Assumptions     |          |     |
|           |         | as to Joint Rotations                              |          | 206 |
|           | 7.4     | Stiffness-Reduction Factors                        |          | 209 |
|           | 7.5     | Columns Leaning on Each Other for In-Plane Design  |          | 213 |
|           | 7.6     | Base Plates for Concentrically Loaded Columns      |          | 217 |
|           | 7.7     | Problems                                           |          | 231 |
| CHAPTER 8 | Introdu | action to Beams                                    |          | 236 |
|           | 8.1     | Types of Beams                                     |          | 236 |
|           | 8.2     | Sections Used as Beams                             |          | 236 |
|           | 8.3     | Bending Stresses                                   |          | 237 |
|           | 8.4     | Plastic Hinges                                     |          | 238 |
|           | 8.5     | Elastic Design                                     |          | 239 |
|           | 8.6     | The Plastic Modulus                                |          | 239 |
|           | 8.7     | Theory of Plastic Analysis                         |          | 242 |
|           | 8.8     | The Collapse Mechanism                             |          | 243 |
|           | 8.9     | The Virtual-Work Method                            |          | 244 |
|           | 8.10    | Location of Plastic Hinge for Uniform Loadings     |          | 248 |
|           |         |                                                    |          |     |

|           | 8.11     | Continuous Beams                                          | 249 |
|-----------|----------|-----------------------------------------------------------|-----|
|           | 8.12     | Building Frames                                           | 251 |
|           | 8.13     | Problems                                                  | 253 |
| CHAPTER S | 9 Design | of Beams for Moments                                      | 262 |
|           | 9.1      | Introduction                                              | 262 |
|           | 9.2      | Yielding Behavior – Full Plastic Moment, Zone 1           | 265 |
|           | 9.3      | Design of Beams, Zone 1                                   | 266 |
|           | 9.4      | Lateral Support of Beams                                  | 274 |
|           | 9.5      | Introduction to Inelastic Buckling, Zone 2                | 276 |
|           | 9.6      | Moment Capacities, Zone 2                                 | 280 |
|           | 9.7      | Elastic Buckling, Zone 3                                  | 281 |
|           | 9.8      | Design Charts                                             | 283 |
|           | 9.9      | Noncompact Sections                                       | 287 |
|           | 9.10     | Problems                                                  | 289 |
| CHAPTER   | 10 Desig | n of Beams—Miscellaneous Topics (Shear, Deflection, etc.) | 295 |
|           | 10.1     | Design of Continuous Beams                                | 295 |
|           | 10.2     | Shear                                                     | 297 |
|           | 10.3     | Deflections                                               | 303 |
|           | 10.4     | Webs and Flanges with Concentrated Loads                  | 308 |
|           | 10.5     | Unsymmetrical Bending                                     | 316 |
|           | 10.6     | Design of Purlins                                         | 319 |
|           | 10.7     | The Shear Center                                          | 322 |
|           | 10.8     | Beam-Bearing Plates                                       | 327 |
|           | 10.9     | Lateral Bracing at Member Ends Supported on Base Plates   | 331 |
|           | 10.10    | Problems                                                  | 332 |
| CHAPTER   | 11 Bendi | ing and Axial Force                                       | 339 |
| •         | 11.1     | Occurrence                                                | 339 |
|           | 11.2     | Members Subject to Bending and Axial Tension              | 340 |
|           | 11.3     | First-Order and Second-Order Moments for Members          |     |
|           |          | Subject to Axial Compression and Bending                  | 343 |
|           | 11.4     | Magnification Factors                                     | 345 |
|           | 11.5     | Moment Modification or $C_m$ Factors                      | 346 |
|           | 11.6     | Review of Beam-Columns in Braced Frames                   | 348 |
|           | 11.7     | Design of Beam-Columns—Braced or Unbraced                 | 357 |
|           | 11.8     | Review of Beam-Columns in Unbraced Frames                 | 360 |
|           | 11.9     | Problems                                                  | 362 |
| CHAPTER   | 12 Bolte | d Connections                                             | 365 |
|           | 12.1     | Introduction                                              | 365 |
|           | 12.2     | Types of Bolts                                            | 365 |

|                  | Contents                                                          | ix  |
|------------------|-------------------------------------------------------------------|-----|
| 12.3             | History of High-Strength Bolts                                    | 366 |
| 12.4             | Advantages of High-Strength Bolts                                 | 367 |
| 12.5             | Snug-Tight, Pretensioned, and Slip-Critical Bolts                 | 367 |
| 12.6             | Methods for Fully Pretensioning High-Strength Bolts               | 371 |
| 12.7             | Slip-Resistant Connections and Bearing-Type Connections           | 374 |
| 12.8             | Mixed Joints                                                      | 375 |
| 12.9             | Sizes of Bolt Holes                                               | 375 |
| 12.10            | Load Transfer and Types of Joints                                 | 376 |
| 12.11            | Failure of Bolted Joints                                          | 379 |
| 12.12            | Spacing and Edge Distances of Bolts                               | 380 |
| 12.13            | Bearing-Type Connections—Loads Passing through                    |     |
| •                | Center of Gravity of Connections                                  | 384 |
| 12.14            | Slip-Critical Connections—Loads Passing through                   |     |
|                  | Center of Gravity of Connections                                  | 394 |
| 12.15            | Problems                                                          | 399 |
| CHAPTER 13 Eccen | trically Loaded Bolted Connections and Historical Notes on Rivets | 407 |
| 13.1             | Bolts Subjected to Eccentric Shear                                | 407 |
| 13.2             | Bolts Subjected to Shear and Tension                              |     |
|                  | (Bearing-Type Connections)                                        | 421 |
| 13.3             | Bolts Subjected to Shear and Tension                              |     |
|                  | (Slip-Critical Connections)                                       | 424 |
| 13.4             | Tension Loads on Bolted Joints                                    | 425 |
| 13.5             | Prying Action                                                     | 428 |
| 13.6             | Historical Notes on Rivets                                        | 431 |
| 13.7             | Types of Rivets                                                   | 432 |
| 13.8             | Strength of Riveted Connections—Rivets                            |     |
|                  | in Shear and Bearing                                              | 434 |
| 13.9             | Problems                                                          | 438 |
| CHAPTER 14 Welde | ed Connections                                                    | 446 |
| 14.1             | General                                                           | 446 |
| 14.2             | Advantages of Welding                                             | 447 |
| 14.3             | American Welding Society                                          | 448 |
| 14.4             | Types of Welding                                                  | 448 |
| 14.5             | Prequalified Welding                                              | 452 |
| 14.6             | Welding Inspection                                                | 452 |
| 14.7             | Classification of Welds                                           | 455 |
| 14.8             | Welding Symbols                                                   | 457 |
| 14.9             | Groove Welds                                                      | 459 |
| 14.10            | Fillet Welds                                                      | 461 |
| 14.11            | Strength of Welds                                                 | 462 |
| 14.12            | AISC Requirements                                                 | 463 |

## x Contents

|         | 14.13       | Design of Simple Fillet Welds                            | 468 |
|---------|-------------|----------------------------------------------------------|-----|
|         | 14.14       | Design of Connections for Members with Both Longitudinal |     |
|         |             | and Transverse Fillet Welds                              | 474 |
|         | 14.15       | Some Miscellaneous Comments                              | 475 |
|         | 14.16       | Design of Fillet Welds for Truss Members                 | 476 |
|         | 14.17       | Plug and Slot Welds                                      | 480 |
|         | 14.18       | Shear and Torsion                                        | 483 |
|         | 14.19       | Shear and Bending                                        | 490 |
|         | 14.20       | Full-Penetration and Partial-Penetration Groove Welds    | 492 |
|         | 14.21       | Problems                                                 | 494 |
| CHAPTER | R 15 Buildi | ing Connections                                          | 503 |
|         | 15.1        | Selection of Type of Fastener                            | 503 |
|         | 15.2        | Types of Beam Connections                                | 504 |
|         | 15.3        | Standard Bolted Beam Connections                         | 511 |
|         | 15.4        | AISC Manual Standard Connection Tables                   | 514 |
|         | 15.5        | Designs of Standard Bolted Framed Connections            | 514 |
|         | 15.6        | Designs of Standard Welded Framed Connections            | 517 |
|         | 15.7        | Single-Plate, or Shear Tab, Framing Connections          | 519 |
|         | 15.8        | End-Plate Shear Connections                              | 522 |
|         | 15.9        | Designs of Welded Seated Beam Connections                | 523 |
|         | 15.10       | Designs of Stiffened Seated Beam Connections             | 525 |
|         | 15.11       | Designs of Moment-Resisting FR Moment Connections        | 526 |
|         | 15.12       | Column Web Stiffeners                                    | 530 |
|         | 15.13       | Problems                                                 | 533 |
| CHAPTER | R 16 Comp   | oosite Beams                                             | 536 |
|         | 16.1        | Composite Construction                                   | 536 |
|         | 16.2        | Advantages of Composite Construction                     | 537 |
|         | 16.3        | Discussion of Shoring                                    | 538 |
|         | 16.4        | Effective Flange Widths                                  | 540 |
|         | 16.5        | Shear Transfer                                           | 541 |
|         | 16.6        | Partially Composite Beams                                | 544 |
|         | 16.7        | Strength of Shear Connectors                             | 544 |
|         | 16.8        | Number, Spacing, and Cover Requirements                  |     |
|         |             | for Shear Connectors                                     | 545 |
|         | 16.9        | Moment Capacity of Composite Sections                    | 547 |
|         | 16.10       | Deflections                                              | 552 |
|         | 16.11       | Design of Composite Sections                             | 554 |
|         | 16.12       | Continuous Composite Sections                            | 562 |
|         | 16.13       | Design of Concrete-Encased Sections                      | 563 |
|         | 16.14       | Problems                                                 | 566 |
|         |             |                                                          |     |

| Contents | хi |
|----------|----|
|          |    |

| CHAPTER 17 C | omposite Columns                                                        | 571 |
|--------------|-------------------------------------------------------------------------|-----|
| 17           | 1 Introduction                                                          | 571 |
| 17           | 2 Advantages of Composite Columns                                       | 572 |
| 17           | .3 Disadvantages of Composite Columns                                   | 574 |
| 17           | .4 Lateral Bracing                                                      | 574 |
| 17           | .5 Specifications for Composite Columns                                 | 575 |
| 17           | .6 Axial Design Strengths of Composite Columns                          | 577 |
| 17           | .7 Shear Strength of Composite Columns                                  | 581 |
| 17           | .8 LRFD and ASD Tables                                                  | 583 |
| 17           | .9 Load Transfer at Footings and Other Connections                      | 584 |
| 17           | .10 Tensile Strength of Composite Columns                               | 584 |
| 17           | .11 Axial Load and Bending                                              | 584 |
| 17           | 12 Problems                                                             | 585 |
| CHAPTER 18 C | over-Plated Beams and Built-up Girders                                  | 587 |
| 18           |                                                                         | 587 |
| 18           | .2 Built-up Girders                                                     | 590 |
| 18           | *                                                                       | 592 |
| 18           |                                                                         | 598 |
| 18           | .5 Design of Stiffeners                                                 | 602 |
| 18           | .6 Problems                                                             | 609 |
| CHAPTER 19 D | esign of Steel Buildings                                                | 610 |
| 19           | .1 Introduction to Low-Rise Buildings                                   | 610 |
| 19           | .2 Types of Steel Frames Used for Buildings                             | 610 |
| 19           | .3 Common Types of Floor Construction                                   | 614 |
| 19           | .4 Concrete Slabs on Open-Web Steel Joists                              | 615 |
| 19           | .5 One-Way and Two-Way Reinforced-Concrete Slabs                        | 618 |
| 19           | .6 Composite Floors                                                     | 620 |
| 19           | .7 Concrete-Pan Floors                                                  | 620 |
| 19           | .8 Steel-Decking Floors                                                 | 622 |
| 19           | .9 Flat Slabs                                                           | 623 |
| 19           | .10 Precast Concrete Floors                                             | 624 |
| 19           | .11 Types of Roof Construction                                          | 626 |
| 19           | .12 Exterior Walls and Interior Partitions                              | 627 |
| 19           | .13 Fireproofing of Structural Steel                                    | 627 |
| 19           | .14 Introduction to High-Rise Buildings                                 | 628 |
|              | .15 Discussion of Lateral Forces                                        | 630 |
|              | .16 Types of Lateral Bracing                                            | 631 |
| 19           | .17 Analysis of Buildings with Diagonal Wind Bracing for Lateral Forces | 637 |

## xii Contents

| Moment-Resisting Joints                      | 639                                                                                                                                                                                          |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design of Buildings for Gravity Loads        | 640                                                                                                                                                                                          |
| Selection of Members                         | 644                                                                                                                                                                                          |
| ation of the Euler Formula                   | 645                                                                                                                                                                                          |
| er Compression Elements                      | 647                                                                                                                                                                                          |
| al-Torsional Buckling of Compression Members | 650                                                                                                                                                                                          |
| ent-Resisting Column Base Plates             | 656                                                                                                                                                                                          |
| ng                                           | 665                                                                                                                                                                                          |
|                                              | 670                                                                                                                                                                                          |
|                                              | 677                                                                                                                                                                                          |
|                                              | Design of Buildings for Gravity Loads Selection of Members  ation of the Euler Formula  r Compression Elements al-Torsional Buckling of Compression Members ent-Resisting Column Base Plates |