

FUNDAMENTALS OF
**GROUND
WATER**

FRANKLIN W. SCHWARTZ / HUBAO ZHANG

CONTENTS

► C H A P T E R 1

INTRODUCTION TO GROUND WATER 1

- 1.1 Why Study Ground Water? 1
- 1.2 Ground Water and the Hydrologic Cycle 8

► C H A P T E R 2

HYDROLOGIC PROCESSES AT THE EARTH'S SURFACE 15

- 2.1 Precipitation 15
- 2.2 Evaporation, Evapotranspiration, and Potential Evapotranspiration 19
- 2.3 Infiltration, Overland Flow, and Interflow 22
- 2.4 A Simple Approach to Runoff Estimation 24
- 2.5 Stream Flow and the Basin Hydrologic Cycle 26
- 2.6 Flood Predictions 37

► C H A P T E R 3

BASIC PRINCIPLES OF GROUND-WATER FLOW 42

- 3.1 Porosity of a Soil or Rock 42
- 3.2 Darcy's Experimental Law 44
- 3.3 Hydraulic Gradient and Ground-Water Flow Direction 48
- 3.4 Hydraulic Conductivity and Permeability 49
- 3.5 Laboratory Measurement of Hydraulic Conductivity 53
- 3.6 Darcy's Equation for Anisotropic Materials 55
- 3.7 Hydraulic Conductivity in Heterogeneous Media 57
- 3.8 Mapping Flow in Geological Systems 62

► C H A P T E R 4

GEOLOGY AND GROUND WATER 69

- 4.1 Aquifers and Confining Beds 69
- 4.2 Transmissive and Storage Properties of Aquifers 71
- 4.3 Geology and Hydraulic Properties 77
- 4.4 Hydraulic Properties of Granular and Crystalline Media 97
- 4.5 Hydraulic Properties of Fractured Media 99

► C H A P T E R 5

THEORY OF GROUND-WATER FLOW 107

- 5.1 Differential Equations of Ground-Water Flow in Saturated Zones 107
- 5.2 Boundary Conditions 114
- 5.3 Initial Conditions for Ground-Water Problems 117
- 5.4 Flownet analysis 117
- 5.5 Mathematical Analysis of Some Simple Flow Problems 122

► C H A P T E R 6

THEORY OF GROUND-WATER FLOW IN UNSATURATED ZONES AND FRACTURED MEDIA 130

- 6.1 Basic Concepts of Flow in Unsaturated Zones 130
- 6.2 Characteristic Curves 133
- 6.3 Flow Equation in the Unsaturated Zone 141
- 6.4 Infiltration and Evapotranspiration 142
- 6.5 Examples of Unsaturated Flow 143
- 6.6 Ground-Water Flow in Fractured Media 146

► C H A P T E R 7

BASIC GEOLOGIC AND HYDROGEOLOGIC INVESTIGATIONS 153

- 7.1 Key Drilling and Push Technologies 153
- 7.2 Piezometers and Water Table Observation Wells 158
- 7.3 Installing Piezometers and Water-Table Wells 162
- 7.4 Making Water-Level Measurements 165
- 7.5 Geophysics Applied to Site Investigations 166
- 7.6 Ground-Water Investigations 179

► C H A P T E R 8

REGIONAL GROUND-WATER FLOW 183

- 8.1 Ground-Water Basins 183
- 8.2 Mathematical Analysis of Regional Flow 184
- 8.3 Introduction to the Computer Program FLOWNETz 192
- 8.4 Recharge 193
- 8.5 Discharge 201
- 8.6 Ground-Water Surface-Water Interactions 205
- 8.7 Freshwater/Saltwater Interactions 209

► C H A P T E R 9

RESPONSE OF CONFINED AQUIFERS TO
PUMPING 219

- 9.1 Aquifers and Aquifer Tests 220
- 9.2 Thiem's Method for Steady-State Flow in a Confined Aquifer 221
- 9.3 Theis Solution for Transient Flow in a Fully Penetrating, Confined Aquifer 224
- 9.4 Prediction of Drawdown and Pumping Rate Using the Theis Solution 225
- 9.5 Theis Type-Curve Method 226
- 9.6 Cooper-Jacob Straight-Line Method 227
- 9.7 Distance-Drawdown Method 231
- 9.8 Estimating T and S Using Recovery Data (Theis, 1935) 232

► C H A P T E R 10

LEAKY CONFINED AQUIFERS AND PARTIALLY PENETRATING WELLS 240

- 10.1 Transient Solution for Flow Without Storage in the Confining Bed 240
- 10.2 Steady-State Solution 245
- 10.3 Transient Solutions for Flow with Storage in Confining Beds 248
- 10.4 Effects of Partially Penetrating Wells 253

► C H A P T E R 11

RESPONSE OF AN UNCONFINED AQUIFER TO PUMPING 258

- 11.1 Calculation of Drawdowns by Correcting Estimates for a Confined Aquifer 259
- 11.2 Determination of Hydraulic Parameters Using Distance/Drawdown Data 260
- 11.3 A General Solution for Drawdown 262
- 11.4 Type-Curve Method 263
- 11.5 The Straight-Line Method 267
- 11.6 Aquifer Testing with a Partially Penetrating Well 270

► C H A P T E R 12

SLUG, STEP, AND INTERMITTENT TESTS 273

- 12.1 Hvorslev Slug Test 273
- 12.2 Cooper-Bredehoeft-Papadopoulos Test 277
- 12.3 Bouwer and Rice Slug Test 280
- 12.4 Step and Intermittent Drawdown Tests 283

► C H A P T E R 13

SUPERPOSITION AND BOUNDED AQUIFERS 292

- 13.1 Multiple Wells and Superposition 292
- 13.2 Drawdown Superimposed on a Uniform Flow Field 294

- 13.3 Repalacing a Geologic Boundary with an Image Well 298

- 13.4 Multiple Boundaries 306

► C H A P T E R 14

SOLVING WELL-HYDRAULICS PROBLEMS WITH A PC 310

- 14.1 Description of WELLz 310
- 14.2 Code Demonstration 314
- 14.3 Interpreting Aquifer Tests 316
- 14.4 Introduction to PUMPz (a Computer Program for Aquifer-Test Analysis) 319
- 14.5 Application of PUMPz 323

► C H A P T E R 15

MANAGEMENT OF GROUND-WATER RESOURCES 336

- 15.1 Basic Concepts in Managing Ground-Water Resources 336
- 15.2 Management Strategies 338
- 15.3 Introduction to Ground-Water Modeling 347
- 15.4 Ground-Water Modeling Software 351
- 15.5 Practical Considerations in the Use of Ground-Water Models 353
- 15.6 Examples of Ground-Water Models 356

► C H A P T E R 16

DISSOLVED MASS IN GROUND WATER 369

- 16.1 Dissolved Constituents in Ground Water 369
- 16.2 Types of Water Analyses 371
- 16.3 Water-Quality Standards 374
- 16.4 Examples of Data Collected in Chemical Surveys 375
- 16.5 Working with Chemical Data 381
- 16.6 Ground-Water Sampling 385
- 16.7 Steps in Water Sampling 392
- 16.8 Maintaining the Quality of Chemical Data 395

► C H A P T E R 17

KINETIC AND EQUILIBRIUM REACTIONS 399

- 17.1 Law of Mass Action and Chemical Equilibrium 399
- 17.2 Deviations from Equilibrium 402
- 17.3 Kinetic Reactions 404

► C H A P T E R 18

KEY REACTIONS INFLUENCING GROUND-WATER CHEMISTRY 411

- 18.1 Acid -Base Reactions 411
- 18.2 Dissolution and Precipitation Reactions Involving Salts and Liquids 413

- 18.3 Complexation Reactions **415**
- 18.4 Surface Reactions **419**
- 18.5 Oxidation-Reduction Reactions **428**
- 18.6 Microorganisms in Ground Water **435**

► C H A P T E R 19

BASICS OF MASS TRANSPORT, ADVECTION,
AND DISPERSION **443**

- 19.1 Advection **444**
- 19.2 Diffusion **446**
- 19.3 Dispersion **450**
- 19.4 Dispersion Coefficients at Microscopic and
Macroscopic Scales **457**
- 19.5 Statistical Patterns of Mass Spreading **458**
- 19.6 A Geostatistical Model of Dispersion **462**
- 19.7 Mixing in Fractured Media **463**
- 19.8 Tracers and Tracer Tests **465**

► C H A P T E R 20

ISOTOPES AND AGE DATING **473**

- 20.1 Stable and Radiogenic Isotopes **473**
- 20.2 ^{18}O and D in the Hydrologic Cycle **476**
- 20.3 Variability in ^{18}O and D Along the Meteoric
Water Line in Ground Water **479**
- 20.4 Deviations in ^{18}O and D Away from the Meteoric
Water Line **483**
- 20.5 Radioactive Age Dating of Ground Water **485**
- 20.6 Indirect Approaches to Age Dating **491**

► C H A P T E R 21

GEOCHEMISTRY OF NATURAL WATER
SYSTEMS **496**

- 21.1 Mixing as an Agent for Chemical Change **496**
- 21.2 Chemical Processes and Their Impact on Water
Chemistry **500**
- 21.3 Examples of How Reactions Affect Water
Chemistry **504**
- 21.4 Case Study of the Milk River Aquifer **512**

► C H A P T E R 22

INTRODUCTION TO CONTAMINANT
HYDROGEOLOGY **519**

- 22.1 Types of Problems and Contaminants **520**
- 22.2 Nonpoint-Source Contaminations **526**
- 22.3 Point-Source Contamination: Plumes of
Dissolved Contaminants **529**
- 22.4 Nonaqueous Phase Liquids in the
Subsurface **535**
- 22.5 Techniques in Problem Investigation **542**
- 22.6 Field Example of an LNAPL
Problem **546**

► C H A P T E R 23

MODELING CONTAMINANT TRANSPORT

(This chapter does not appear in the printed book.
Please visit www.wiley.com/college/schwartz
[<http://www.wiley.com/college/schwartz>](http://www.wiley.com/college/schwartz)
to find Chapter 23.)

- 23.1 Derivation of the Mass Transport Equations
- 23.2 Advection-Dispersion-Reaction Equation
- 23.3 Boundary and Initial Conditions
- 23.4 Analytical Solutions of Mass Transport Equations
in One Dimension
- 23.5 Analytical Solutions of Mass Transport Equations
in Three Dimensions
- 23.6 Other Useful Analytic Solutions
- 23.7 Particle Tracking Methods
- 23.8 Numerical Solutions in Mass Transport
Equations
- 23.9 Introduction to CONTw.exe

► A P P E N D I X A

TABLE OF ATOMIC WEIGHTS **557**

REFERENCES **558**

INDEX **577**