

Volatility and Correlation

The Perfect Hedger and the Fox

Contents

r	erace			XXI		
	0.1	Why a	Second Edition?	xxi		
	0.2	What 7	This Book Is Not About	xxiii		
	0.3	Structu	ire of the Book	xxiv		
	0.4	ew Subtitle	xxiv			
A	cknowledgements x					
I	Fou	ndatio	ns	1		
1	The	Theory and Practice of Option Modelling				
	1.1	The R	ole of Models in Derivatives Pricing	3		
		1.1.1	What Are Models For?	3		
		1.1.2	The Fundamental Approach	5		
		1.1.3	The Instrumental Approach	7		
		1.1.4	A Conundrum (or, 'What is Vega Hedging For?')	8		
	1.2	The E	fficient Market Hypothesis and Why It Matters for Option Pricing	9		
		1.2.1	The Three Forms of the EMH	9		
		1.2.2	Pseudo-Arbitrageurs in Crisis	10		
		1.2.3	Model Risk for Traders and Risk Managers	11		
		1.2.4	The Parable of the Two Volatility Traders	12		
	1.3	Marke	t Practice	14		
		1.3.1	Different Users of Derivatives Models	14		
		1.3.2	In-Model and Out-of-Model Hedging	15		
	1.4	The C	alibration Debate	17		
		1.4.1	Historical vs Implied Calibration	18		
		1.4.2	The Logical Underpinning of the Implied Approach	19		
		1.4.3	Are Derivatives Markets Informationally Efficient?	21		
		1.4.4	Back to Calibration	26		
		1.4.5	A Practical Recommendation	27		

viii *CONTENTS*

	1.5	Across	-Markets Comparison of Pricing and Modelling Practices	27			
	1.6	Using !	Models	30			
2	Optio	Option Replication 3					
	2.1	The Be	edrock of Option Pricing	31			
	2.2	The Ar	nalytic (PDE) Approach	32			
		2.2.1	The Assumptions	32			
		2.2.2	The Portfolio-Replication Argument (Deterministic Volatility)	32			
		2.2.3	The Market Price of Risk with Deterministic Volatility	34			
		2.2.4	Link with Expectations - the Feynman-Kac Theorem	36			
	2.3	Binomi	ial Replication	38			
		2.3.1	First Approach - Replication Strategy	39			
		2.3.2	Second Approach - 'Naïve Expectation'	41			
		2.3.3	Third Approach - 'Market Price of Risk'	42			
		2.3.4	A Worked-Out Example	45			
		2.3.5	Fourth Approach - Risk-Neutral Valuation	46			
		2.3.6	Pseudo-Probabilities	48			
		2.3.7	Are the Quantities π_1 and π_2 Really Probabilities?	49			
		2.3.8	Introducing Relative Prices	51			
		2.3.9	Moving to a Multi-Period Setting	53			
		2.3.10	Fair Prices as Expectations	56			
		2.3.11	Switching Numeraires and Relating Expectations Under Different Measures	58			
		2.3.12	Another Worked-Out Example	61			
		2.3.13	Relevance of the Results	64			
	2.4	Justifyi	ing the Two-State Branching Procedure	65			
		2.4.1	How To Recognize a Jump When You See One	65			
	2.5	The Na	ature of the Transformation between Measures: Girsanov's Theorem	69			
		2.5.1	An Intuitive Argument	69			
		2.5.2	A Worked-Out Example	70			
	2.6		ing Between the PDE, the Expectation and the Binomial ation Approaches	73			
3	The 1	The Building Blocks					
	3.1	Introdu	action and Plan of the Chapter	75			
	3.2	Definit	ion of Market Terms	75			
	3.3	Hedgin	ng Forward Contracts Using Spot Quantities	77			
		3.3.1	Hedging Equity Forward Contracts	78			
		3.3.2	Hedging Interest-Rate Forward Contracts	79			
	3.4	Hedgin	ng Options: Volatility of Spot and Forward Processes	80			

CONTENTS ix

	3.5		ink Between Root-Mean-Squared Volatilities and the	0.4
	3.6		Dependence of Volatility	84 85
	3.0	3.6.1	sibility of a Series of Root-Mean-Squared Volatilities The Equity/FX Case	85
		3.6.2	The Interest-Rate Case	86
	3.7		ary of the Definitions So Far	87
	3.8		ng an Option with a Forward-Setting Strike	89
	3.0	3.8.1	Why Is This Option Important? (And Why Is it Difficult	09
		3.0.1	to Hedge?)	90
		3.8.2	Valuing a Forward-Setting Option	91
	3.9	Quadra	atic Variation: First Approach	95
		3.9.1	Definition	95
		3.9.2	Properties of Variations	96
		3.9.3	First and Second Variation of a Brownian Process	97
		3.9.4	Links between Quadratic Variation and $\int_t^T \sigma(u)^2 du$	97
		3.9.5	Why Quadratic Variation Is So Important (Take 1)	98
4	Vari	ance an	d Mean Reversion in the Real and the Risk-Adjusted Worlds	101
	4.1		uction and Plan of the Chapter	101
	4.2	Hedgir	ng a Plain-Vanilla Option: General Framework	102
		4.2.1	Trading Restrictions and Model Uncertainty:	
			Theoretical Results	103
		4.2.2	The Setting	104
		4.2.3	The Methodology	104
		4.2.4	Criterion for Success	106
	4.3	Hedgir	ng Plain-Vanilla Options: Constant Volatility	106
		4.3.1	Trading the Gamma: One Step and Constant Volatility	108
		4.3.2	Trading the Gamma: Several Steps and Constant Volatility	114
	4.4	Hedgii	ng Plain-Vanilla Options: Time-Dependent Volatility	116
		4.4.1	Views on Gamma Trading When the Volatility is Time Dependent	116
		4.4.2	Which View Is the Correct One? (and the Feynman–Kac	
			Theorem Again)	119
	4.5	Hedgir	ng Behaviour In Practice	121
		4.5.1	Analysing the Replicating Portfolio	121
		4.5.2	Hedging Results: the Time-Dependent Volatility Case	122
		4.5.3	Hedging with the Wrong Volatility	125
	4.6	Robus	tness of the Black-and-Scholes Model	127
	4.7	Is the	Total Variance All That Matters?	130
	4.8	Hedgi	ng Plain-Vanilla Options: Mean-Reverting Real-World Drift	131

x CONTENTS

	4.9	Hedgir	g Plain-Vanilla Options: Finite Re-Hedging Intervals Again	135
		4.9.1	The Crouhy-Galai Set-Up	135
5	Insta	ntaneou	s and Terminal Correlation	141
	5.1	Correla	ation, Co-Integration and Multi-Factor Models	141
		5.1.1	The Multi-Factor Debate	144
	5.2	The St	ochastic Evolution of Imperfectly Correlated Variables	146
	5.3		ole of Terminal Correlation in the Joint Evolution of Stochastic	
		Variabl		151
		5.3.1	Defining Stochastic Integrals	151
		5.3.2	Case 1: European Option, One Underlying Asset	153
		5.3.3	Case 2: Path-Dependent Option, One Asset	155
		5.3.4	Case 3: Path-Dependent Option, Two Assets	156
	5.4		lizing the Results	162
	5.5	Movin	g Ahead	164
II	Sm	iles –]	Equity and FX	165
6	Prici	ng Opti	ons in the Presence of Smiles	167 ¹
	6.1	Plan of	f the Chapter	167
	6.2	Backgr	round and Definition of the Smile	168
	6.3	Hedgir	ng with a Compensated Process: Plain-Vanilla and Binary Options	169
		6.3.1	Delta- and Vega-Hedging a Plain-Vanilla Option	169
		6.3.2	Pricing a European Digital Option	172
	6.4	Hedge	Ratios for Plain-Vanilla Options in the Presence of Smiles	173
		6.4.1	The Relationship Between the True Call Price Functional	
			and the Black Formula	174
		5.4.2	Calculating the Delta Using the Black Formula and the	1.77
			Implied Volatility	175
			rendence of Implied Volatilities on the Strike and the	176
		6 .	Sticky Smiles and What They Imply about Changes	170
		0.	deky billies and what they imply about changes	178
	6.5	Smile	Tale 1.	180
	6.6	Smile '	Tale 2: 'Fig.	182
		6.6.1	Relevance of the Toating Smiles	183
	6.7	When	Does Risk Aversion M.	184
		6.7.1	Motivation	184
		6.7.2	The Importance of an Assessme,	
			for Model Building	185
		6.7.3	The Principle of Absolute Continuity	186

		6.7.4	The Effect of Supply and Demand	187
		6.7.5	A Stylized Example: First Version	187
		6.7.6	A Stylized Example: Second Version	194
		6.7.7	A Stylized Example: Third Version	196
		6.7.8	Overall Conclusions	196
		6.7.9	The EMH Again	199
7	Emp	oirical F	acts About Smiles	201
	7.1	What i	is this Chapter About?	201
		7.1.1	'Fundamental' and 'Derived' Analyses	201
		7.1.2	A Methodological Caveat	202
	7.2	Marke	t Information About Smiles	203
		7.2.1	Direct Static Information	203
		7.2.2	Semi-Static Information	204
		7.2.3	Direct Dynamic Information	204
		7.2.4	Indirect Information	205
	7.3	Equitie	es	206
		7.3.1	Basic Facts	206
		7.3.2	Subtler Effects	206
	7.4	Interes	t Rates	222
		7.4.1	Basic Facts	222
		7.4.2	Subtler Effects	224
	7.5	FX Ra	ites	227
		7.5.1	Basic Facts	227
		7.5.2	Subtler Effects	227
	7.6	Conclu	asions	235
8	Gen	eral Fea	tures of Smile-Modelling Approaches	237
	8.1	Fully-S	Stochastic-Volatility Models	237
	8.2	Local-	Volatility (Restricted-Stochastic-Volatility) Models	239
	8.3	Jump-	-Diffusion Models	241
		8.3.1	Discrete Amplitude	241
		8.3.2	Continuum of Jump Amplitudes	242
	8.4	Varian	ce-Gamma Models	243
	8.5	Mixing	g Processes	243
		8.5.1	A Pragmatic Approach to Mixing Models	244
	8.6	Other	Approaches	245
		8.6.1	Tight Bounds with Known Quadratic Variation	245
		8.6.2	Assigning Directly the Evolution of the Smile Surface	246
	8.7	The In	nportance of the Quadratic Variation (Take 2)	246

xii CONTENTS

9	The	Input Da	ata: Fitting an Exogenous Smile Surface	249
	9.1	What is	This Chapter About?	249
	9.2	Analytic	c Expressions for Calls vs Process Specification	249
	9.3	Direct I	Use of Market Prices: Pros and Cons	250
	9.4	Stateme	ent of the Problem	251
	9.5	Fitting	Prices	252
	9.6	Fitting '	Transformed Prices	254
	9.7	Fitting	the Implied Volatilities	255
		9.7.1	The Problem with Fitting the Implied Volatilities	255
	9.8	Fitting	the Risk-Neutral Density Function – General	256
		9.8.1	Does It Matter if the Price Density Is Not Smooth?	257
		9.8.2	Using Prior Information (Minimum Entropy)	258
	9.9	Fitting	the Risk-Neutral Density Function: Mixture of Normals	259
		9.9.1	Ensuring the Normalization and Forward Constraints	261
		9.9.2	The Fitting Procedure	264
	9.10	Numeri	cal Results	265
		9.10.1	Description of the Numerical Tests	265
		9.10.2	Fitting to Theoretical Prices: Stochastic-Volatility Density	265
		9.10.3	Fitting to Theoretical Prices: Variance-Gamma Density	268
			Fitting to Theoretical Prices: Jump-Diffusion Density	270
			Fitting to Market Prices	272
	9.11		Ferm $\frac{\partial C}{\partial S}$ Really a Delta?	275
	9.12	-	the Risk-Neutral Density Function:	
			neralized-Beta Approach	277
			Derivation of Analytic Formulae	280
			Results and Applications	287
		9.12.3	What Does This Approach Offer?	291
10	Quad	lratic Va	ariation and Smiles	293
	10.1	Why Tl	his Approach Is Interesting	293
	10.2	The BJ	N Framework for Bounding Option Prices	293
	10.3	The BJ	N Approach – Theoretical Development	294
		10.3.1	Assumptions and Definitions	294
		10.3.2	Establishing Bounds	297
		10.3.3	Recasting the Problem	298
		10.3.4	Finding the Optimal Hedge	299
	10.4	The BJ	N Approach: Numerical Implementation	300
		10.4.1	Building a 'Traditional' Tree	301
		10.4.2	Building a BJN Tree for a Deterministic Diffusion	301
		10.4.3	Building a BJN Tree for a General Process	304
		10.4.4	Computational Results	307

CONTENTS	xiii
----------	------

		10.4.5	Creating Asymmetric Smiles	309
		10.4.6	Summary of the Results	311
	10.5	Discuss	ion of the Results	312
		10.5.1	Resolution of the Crouhy-Galai Paradox	312
		10.5.2	The Difference Between Diffusions and Jump-Diffusion	
			Processes: the Sample Quadratic Variation	312
		10.5.3	How Can One Make the Approach More Realistic?	314
		10.5.4	The Link with Stochastic-Volatility Models	314
		10.5.5	The Link with Local-Volatility Models	315
		10.5.6	The Link with Jump-Diffusion Models	315
	10.6	Conclus	sions (or, Limitations of Quadratic Variation)	316
11	Local	-Volatili	ity Models: the Derman-and-Kani Approach	319
	11.1	General	Considerations on Stochastic-Volatility Models	319
	11.2	Special	Cases of Restricted-Stochastic-Volatility Models	321
	11.3	The Du	pire, Rubinstein and Derman-and-Kani Approaches	321
	11.4	Green's	Functions (Arrow-Debreu Prices) in the DK Construction	322
		11.4.1	Definition and Main Properties of Arrow-Debreu Prices	322
		11.4.2	Efficient Computation of Arrow-Debreu Prices	324
	11.5	The De	rman-and-Kani Tree Construction	326
		11.5.1	Building the First Step	327
		11.5.2	Adding Further Steps	329
	11.6	Numeri	cal Aspects of the Implementation of the DK Construction	331
		11.6.1	Problem 1: Forward Price Greater Than $S(up)$ or Smaller Than $S(down)$	331
		11.6.2	Problem 2: Local Volatility Greater Than $\frac{1}{2} S(up) - S(down) $	332
		11.6.3	Problem 3: Arbitrariness of the Choice of the Strike	332
	11.7		entation Results	334
	11.7	11.7.1		334
		11.7.1	Benchmarking 1: The No-Smile Case Renchmarking 2: The Time Dependent Veletility Case	335
		11.7.2	Benchmarking 2: The Time-Dependent-Volatility Case	
			Benchmarking 3: Purely Strike-Dependent Implied Volatility	336
		11.7.4	Benchmarking 4: Strike-and-Maturity-Dependent Implied Volatility	337
		11.7.5	Conclusions	338
	11.8	Estimat	ing Instantaneous Volatilities from Prices as an Inverse Problem	343
12	Extra	_	ne Local Volatility from Option Prices	345
	12.1	Introdu		345
		12.1.1	A Possible Regularization Strategy	346
		12.1.2	Shortcomings	346
	12.2		odelling Framework	347
	12.3	A Com	putational Method	349

xiv CONTENTS

		12.3,1	Backward Induction	349
		12.3.2	Forward Equations	350
		12.3.3	Why Are We Doing Things This Way?	352
		12.3.4	Related Approaches	354
	12.4	Compu	tational Results	355
		12.4.1	Are We Looking at the Same Problem?	356
	12.5	The Lin	nk Between Implied and Local-Volatility Surfaces	357
		12.5.1	Symmetric ('FX') Smiles	358
		12.5.2	Asymmetric ('Equity') Smiles	361
		12.5.3	Monotonic ('Interest-Rate') Smile Surface	368
	12.6	Gaining	g an Intuitive Understanding	368
		12.6.1	Symmetric Smiles	369
		12.6.2	Asymmetric Smiles: One-Sided Parabola	370
		12.6.3	Asymmetric Smiles: Monotonically Decaying	372
	12.7	What L	ocal-Volatility Models Imply about Sticky and Floating Smiles	373
	12.8	No-Arb	pitrage Conditions on the Current Implied Volatility Smile Surface	375
		12.8.1	Constraints on the Implied Volatility Surface	375
		12.8.2	Consequences for Local Volatilities	381
		_	cal Performance	385
	12.10	Append	lix I: Proof that $\frac{\partial^2 Call(S_t, K, T, t)}{\partial K^2} = \phi(S_T) _K$	386
13	Stock	nastic-Vo	platility Processes	389
	13.1	Plan of	the Chapter	389
	13.2	Portfoli	io Replication in the Presence of Stochastic Volatility	389
		13.2.1	Attempting to Extend the Portfolio Replication Argument	389
		13.2.2	The Market Price of Volatility Risk	396
		13.2.3	Assessing the Financial Plausibility of λ_{σ}	398
	13.3	Mean-F	Reverting Stochastic Volatility	401
		13.3.1	The Ornstein-Uhlenbeck Process	402
		13.3.2	The Functional Form Chosen in This Chapter	403
		13.3.3	The High-Reversion-Speed, High-Volatility Regime	404
	13.4	Qualita	tive Features of Stochastic-Volatility Smiles	405
		13.4.1	The Smile as a Function of the Risk-Neutral Parameters	406
	13.5	The Re	lation Between Future Smiles and Future Stock Price Levels	416
		13.5.1	An Intuitive Explanation	417
	13.6	Portfoli	io Replication in Practice: The Stochastic-Volatility Case	418
		13.6.1	The Hedging Methodology	418
		13.6.2	A Numerical Example	420
	13.7	Actual	Fitting to Market Data	427
	13.8	Conclus	eione	126

ž

CONTENTS	XV

14	Jump	-Diffus	ion Processes	439
	14.1	Introduc	ction	439
	14.2	The Fin	ancial Model: Smile Tale 2 Revisited	441
	14.3	g and Replicability in the Presence of Jumps: First		
		Conside		444
			What Is Really Required To Complete the Market?	445
	14.4	-	e Description of Jump–Diffusions	449
			The Stock Price Dynamics	449
	14.5		g with Jump-Diffusion Processes	455
		14.5.1	Hedging with a Bond and the Underlying Only	455
		14.5.2	Hedging with a Bond, a Second Option and the Underlying	457
		14.5.3	The Case of a Single Possible Jump Amplitude	460
		14.5.4	Moving to a Continuum of Jump Amplitudes	465
		14.5.5	Determining the Function g Using the Implied Approach	465
		14.5.6	Comparison with the Stochastic-Volatility Case (Again)	470
	14.6	The Price	cing Formula for Log-Normal Amplitude Ratios	470
	14.7	The Price	cing Formula in the Finite-Amplitude-Ratio Case	472
		14.7.1	The Structure of the Pricing Formula for Discrete Jump Amplitude Ratios	474
		14.7.2	Matching the Moments	475
			Numerical Results	476
	14.8	The Lin	k Between the Price Density and the Smile Shape	485
			A Qualitative Explanation	491
	14.9		ive Features of Jump-Diffusion Smiles	494
		14.9.1	The Smile as a Function of the Risk-Neutral Parameters	494
		14.9.2	Comparison with Stochastic-Volatility Smiles	499
	14.10		Diffusion Processes and Market Completeness Revisited	500
		-	o Replication in Practice: The Jump–Diffusion Case	502
			A Numerical Example	503
			Results	504
		14.11.3	Conclusions	509
15	Varia	nce-Ga	mma	511
	15.1	Who Ca	an Make Best Use of the Variance-Gamma Approach?	511
	15.2	The Var	riance-Gamma Process	513
		15.2.1	Definition	513
		15.2.2	Properties of the Gamma Process	514
		15.2.3	Properties of the Variance-Gamma Process	514
		15.2.4	Motivation for Variance-Gamma Modelling	517
		15.2.5	Properties of the Stock Process	518
		15.2.6	Option Pricing	519

XV1	CONTENTS

	15.3	Statistic	eal Properties of the Price Distribution	522
		15.3.1	The Real-World (Statistical) Distribution	522
		15.3.2	The Risk-Neutral Distribution	522
	15.4	Feature	s of the Smile	523
	15.5	Conclus	sions	527
16	Displ	aced Dif	ffusions and Generalizations	529
	16.1	Introduc	ction	529
	16.2	Gaining	Intuition	530
		16.2.1	First Formulation	530
		16.2.2	Second Formulation	531
	16.3	Evolvin	g the Underlying with Displaced Diffusions	531
	16.4	Option	Prices with Displaced Diffusions	532
	16.5	Matchir	ng At-The-Money Prices with Displaced Diffusions	533
		16.5.1	A First Approximation	533
		16.5.2	Numerical Results with the Simple Approximation	534
		16.5.3	Refining the Approximation	534
		16.5.4	Numerical Results with the Refined Approximation	544
	16.6	The Sm	nile Produced by Displaced Diffusions	553 ⅓
		16.6.1	How Quickly is the Normal-Diffusion Limit Approached?	553
	16.7	Extensi	on to Other Processes	560
17	No-A	rbitrage	e Restrictions on the Dynamics of Smile Surfaces	563
	17.1	A Work	ked-Out Example: Pricing Continuous Double Barriers	564
		17.1.1	Money For Nothing: A Degenerate Hedging Strategy for a Call Option	564
		17.1.2	Static Replication of a Continuous Double Barrier	566
	17.2		is of the Cost of Unwinding	571
	17.3	•	ader's Dream	575
	17.4	4 Plan of the Remainder of the Chapter		581
	17.5	Conditions of No-Arbitrage for the Stochastic Evolution of Future Smile		
		Surface	e's	582
		17.5.1	Description of the Market	582
		17.5.2	The Building Blocks	584
	17.6	Determ	inistic Smile Surfaces	585
		17.6.1	Equivalent Descriptions of a State of the World	585
		17.6.2	Consequences of Deterministic Smile Surfaces	587
		17.6.3	Kolmogorov-Compatible Deterministic Smile Surfaces	588
		17.6.4	Conditions for the Uniqueness of Kolmogorov-Compatible Densities	589
			1/Q113111Q3	フロフ

CONTENTS		xvii	
		17.6.5 Floating Smiles	591
	17.7	Stochastic Smiles	593
		17.7.1 Stochastic Floating Smiles	594
		17.7.2 Introducing Equivalent Deterministic Smile Surfaces	595
		17.7.3 Implications of the Existence of an Equivalent	
		Deterministic Smile Surface	596
		17.7.4 Extension to Displaced Diffusions	597
	17.8	The Strength of the Assumptions	597
	17.9	Limitations and Conclusions	598
Ш	In	terest Rates – Deterministic Volatilities	601
18	Mear	Reversion in Interest-Rate Models	603
	18.1	Introduction and Plan of the Chapter	603
	18.2	Why Mean Reversion Matters in the Case of Interest-Rate Models	604
		18.2.1 What Does This Mean for Forward-Rate Volatilities?	606
	18.3	A Common Fallacy Regarding Mean Reversion	608
		18.3.1 The Grain of Truth in the Fallacy	609
	18.4	The BDT Mean-Reversion Paradox	610
	18.5	The Unconditional Variance of the Short Rate in BDT – the Discrete Case	612
	18.6	The Unconditional Variance of the Short Rate in BDT-the Continuous-Time Equivalent	616
	18.7	Mean Reversion in Short-Rate Lattices: Recombining vs Bushy Trees	617
	18.8	Extension to More General Interest-Rate Models	620
	18.9	Appendix I: Evaluation of the Variance of the Logarithm of the Instantaneous Short Rate	622
			022
19		ility and Correlation in the LIBOR Market Model	625
	19.1	Introduction	625
	19.2	Specifying the Forward-Rate Dynamics in the LIBOR Market Model	626
		19.2.1 First Formulation: Each Forward Rate in Isolation	626
		19.2.2 Second Formulation: The Covariance Matrix	628
		19.2.3 Third Formulation: Separating the Correlation from the Volatility Term	630
	19.3	Link with the Principal Component Analysis	631
	19.4	Worked-Out Example 1: Caplets and a Two-Period Swaption	632
	19.5	Worked-Out Example 2: Serial Options	635
	19.6	Plan of the Work Ahead	636

xviii CONTENTS

20	Calib	ration Strategies f	for the LIBOR Market Model	639
	20.1	Plan of the Chapte	er	639
	20.2	The Setting		639
		20.2.1 A Geome	tric Construction: The Two-Factor Case	640
		20.2.2 Generaliz	ation to Many Factors	642
		20.2.3 Re-Introd	ucing the Covariance Matrix	642
	20.3	Fitting an Exogene	ous Correlation Function	643
	20.4	Numerical Results		646
		20.4.1 Fitting the	e Correlation Surface with a Three-Factor Model	646
		20.4.2 Fitting the	e Correlation Surface with a Four-Factor Model	650
		20.4.3 Fitting Po	ortions of the Target Correlation Matrix	654
	20.5	Analytic Expression	ons to Link Swaption and Caplet Volatilities	659
		20.5.1 What Are	We Trying to Achieve?	659
		20.5.2 The Set-U	Jp	659
	20.6	Optimal Calibratio	on to Co-Terminal Swaptions	662
		20.6.1 The Strate	egy	662
21	Speci	pecifying the Instantaneous Volatility of Forward Rates		
	21.1	Introduction and M	Motivation	667
	21.2	The Link between	Instantaneous Volatilities	
		and the Future Ter	rm Structure of Volatilities	668
	21.3	A Functional Form	n for the Instantaneous Volatility Function	671
		21.3.1 Financial	Justification for a Humped Volatility	672
	21.4	Ensuring Correct	Caplet Pricing	673
	21.5		aneous Volatility Function: Imposing Time ne Term Structure of Volatilities	677
	21.6		eneous Solution Always Possible?	679
	21.7	Fitting the Instant	aneous Volatility Function: The Information from the	
	21.0	Swaption Market		680
	21.8	Conclusions		686
22	Spec	fying the Instanta	neous Correlation Among Forward Rates	687
	22.1	Why Is Estimating	g Correlation So Difficult?	687
	22.2	What Shape Shou	ld We Expect for the Correlation Surface?	688
	22.3	Features of the Si	mple Exponential Correlation Function	689
	22.4	Features of the M	odified Exponential Correlation Function	691
	22.5	Features of the So	uare-Root Exponential Correlation Function	694
	22.6	Further Comparison	ons of Correlation Models	697
	22.7	Features of the Sc	honmakers-Coffey Approach	697
	22.8	Does It Make a D	rifference (and When)?	698

CONTENTS	xix
----------	-----

IV	In	terest Rates – Smiles	701
23	How	to Model Interest-Rate Smiles	703
	23.1	What Do We Want to Capture? A Hierarchy of Smile-Producing	
		Mechanisms	703
	23.2	Are Log-Normal Co-Ordinates the Most Appropriate?	704
		23.2.1 Defining Appropriate Co-ordinates	705
		Description of the Market Data	706
		Empirical Study I: Transforming the Log-Normal Co-ordinates	715
		The Computational Experiments	718
	23.6	The Computational Results	719
		Empirical Study II: The Log-Linear Exponent	721
	23.8	Combining the Theoretical and Experimental Results	725
	23.9	Where Do We Go From Here?	725
24	(CEV	V) Processes in the Context of the LMM	729
	24.1	Introduction and Financial Motivation	729
	24.2	Analytical Characterization of CEV Processes	730
	24.3	Financial Desirability of CEV Processes	732
	24.4	Numerical Problems with CEV Processes	734
	24.5	Approximate Numerical Solutions	735
		24.5.1 Approximate Solutions: Mapping to Displaced Diffusions	735
		24.5.2 Approximate Solutions: Transformation of Variables	735
		24.5.3 Approximate Solutions: the Predictor-Corrector Method	736
	24.6	Problems with the Predictor-Corrector Approximation for the LMM	747
25	Stock	nastic-Volatility Extensions of the LMM	751
	25.1	Plan of the Chapter	751
	25.2	What is the Dog and What is the Tail?	753
	25.3	Displaced Diffusion vs CEV	754
	25.4	The Approach	754
	25.5	Implementing and Calibrating the Stochastic-Volatility LMM	756
		25.5.1 Evolving the Forward Rates	759
		25.5.2 Calibrating to Caplet Prices	759
	25.6	Suggestions and Plan of the Work Ahead	764
26	The Dynamics of the Swaption Matrix		
	26.1	Plan of the Chapter	765
	26.2	Assessing the Quality of a Model	766
	26.3	The Empirical Analysis	767
		26.3.1 Description of the Data	767
		26.3.2 Results	768

XX	CONTENTS
272	001.12.113

	26.4	Extracting the Model-Implied Principal Components	776
		26.4.1 Results	778
	26.5	Discussion, Conclusions and Suggestions for Future Work	781
27	Stock	nastic-Volatility Extension	
	of th	e LMM: Two-Regime Instantaneous Volatility	783
	27.1	The Relevance of the Proposed Approach	783
	27.2	The Proposed Extension	783
	27.3	An Aside: Some Simple Properties of Markov Chains	785
		27.3.1 The Case of Two-State Markov Chains	787
	27.4	Empirical Tests	788
		27.4.1 Description of the Test Methodology	788
		27.4.2 Results	790
	27.5	How Important Is the Two-Regime Feature?	798
	27.6	Conclusions	801
Bib	oliogra	aphy	805
Ind	lex		813