

Contents

Preface	iv
---------	----

PART ONE

The Context of Systems Development Projects 3

1 THE CONTEXT OF SYSTEMS ANALYSIS AND DESIGN METHODS 4

Introduction 5
The Product—Information System 5
The People—System Stakeholders 7

Systems Owners 7
Systems Users 7
Systems Designers 9
Systems Builders 9
Systems Analysts 10
External Service Providers 10
The Project Manager 10

Business Drivers for Today's Information Systems 11

Globalization of the Economy 11
Electronic Commerce and Business 11
Security and Privacy 14
Collaboration and Partnership 14
Knowledge Asset Management 15
Continuous Improvement and Total Quality
Management 15
Business Process Redesign 16

Technology Drivers for Today's Information Systems 16

Networks and the Internet 16 Mobile and Wireless Technologies 18 Object Technologies 18 Collaborative Technologies 19 Enterprise Applications 19

The Process—System Development Process 23

System Initiation 25 System Analysis 25 System Design 26 System Implementation 26 System Support and Continuous Improvement 27

2 INFORMATION SYSTEMS DEVELOPMENT 00

Introduction 35
The Process of Systems Development 35

The Capability Maturity Model 35 Life Cycle versus Methodology 37 Underlying Principles for Systems Development 38

A Systems Development Process 41

Where Do Systems Development Projects Come From? 41 The Systems Development Phases 43 Cross Life-Cycle Activities 52 Sequential versus Iterative Development 54

Alternative Routes and Strategies 54

The Model-Driven Development
Strategy 57
The Rapid Application Development
Strategy 60
The Commercial Application Package
Implementation Strategy 62
Hybrid Strategies 65
System Maintenance 65

Automated Tools and Technology 68

Computer-Assisted Systems Engineering 68 Application Development Environments 71 Process and Project Managers 71

3 PROJECT MANAGEMENT 78

Introduction 79
What Is Project Management? 79

The Causes of Failed Projects 80 The Project Management Body of Knowledge 83

The Project Management Life Cycle 87

Activity 1—Negotiate Scope 89
Activity 2—Identify Tasks 89
Activity 3—Estimate Task Durations 91
Activity 4—Specify Intertask
Dependencies 93

Activity 5—Assign Resources 94
Activity 6—Direct the Team Effort 98
Activity 7—Monitor and Control Progress 99
Activity 8—Assess Project Results and
Experiences 107

PART TWO

Systems Analysis Methods 115

4 SYSTEMS ANALYSIS 116

Introduction 117 What Is Systems Analysis? 117 Systems Analysis Approaches 118

Model-Driven Analysis Approaches 118
Accelerated Systems Analysis Approaches 120
Requirements Discovery Methods 122
Business Process Redesign Methods 123
Systems Analysis Strategies 123

The Scope Definition Phase 123

Task 1.1—Identify Baseline Problems and Opportunities 124
Task 1.2—Negotiate Baseline Scope 127
Task 1.3—Assess Baseline Project
Worthiness 127
Task 1.4—Develop Baseline Schedule and Budget 128
Task 1.5—Communicate the Project Plan 128

The Problem Analysis Phase 129

Task 2.1—Understand the Problem
Domain 129
Task 2.2—Analyze Problems and
Opportunities 133
Task 2.3—Analyze Business Processes 133
Task 2.4—Establish System Improvement
Objectives 135
Task 2.5—Update or Refine the Project
Plan 135
Task 2.6—Communicate Findings and
Recommendations 136

The Requirements Analysis Phase 137

Task 3.1—Identify and Express System
Requirements 138
Task 3.2—Prioritize System Requirements 139
Task 3.3—Update or Refine the Project
Plan 140
Task 3.4—Communicate the Requirements
Statement 140
Ongoing Requirements Management 140

The Logical Design Phase 140

Task 4.1a—Structure Functional
Requirements 141
Task 4.1b—Prototype Functional Requirements
(alternative) 142
Task 4.2—Validate Functional
Requirements 142
Task 4.3—Define Acceptance Test Cases 142

The Decision Analysis Phase 143

Task 5.1—Identify Candidate Solutions 143
Task 5.2—Analyze Candidate Solutions 144
Task 5.3—Compare Candidate Solutions 146
Task 5.4—Update the Project Plan 146
Task 5.5—Recommend a System Solution 147

5 FACT-FINDING TECHNIQUES FOR REQUIREMENTS DISCOVERY 154

Introduction 155

An Introduction to Requirements Discovery 155

The Process of Requirements Discovery 157

Problem Discovery and Analysis 157
Requirements Discovery 158
Documenting and Analyzing
Requirements 158
Requirements Management 159

Fact-Finding Techniques 160

Sampling of Existing Documentation, Forms, and Files 160
Research and Site Visits 162
Observation of the Work Environment 163
Questionnaires 164
Interviews 166
How to Conduct an Interview 167
Discovery Prototyping 171
Joint Requirements Planning 172

A Fact-Finding Strategy 176

6 MODELING SYSTEM REQUIREMENTS WITH USE CASES 183

Introduction 184
An Introduction to Use-Case Modeling 184
System Concepts for Use-Case Modeling 185

Use Cases 186 Actors 186 Relationships 187 The Process of Requirements Use-Case Modeling 190

Step 1: Identify Business Actors 190
Step 2: Identify Business Requirements Use
Cases 190
Step 3: Construct Use-Case Model
Diagram 194

Step 4: Document Business Requirements Use-Case Narratives 195

Use Cases and Project Management 199

Ranking and Evaluating Use Cases 199 Identifying Use-Case Dependencies 200

7 DATA MODELING AND ANALYSIS 206

Introduction 207
What Is Data Modeling? 207
System Concepts for Data Modeling 208

Entities 208 Attributes 209 Relationships 212

The Process of Logical Data Modeling 220

Strategic Data Modeling 220
Data Modeling during Systems
Analysis 222
Looking Ahead to Systems Design 222
Automated Tools for Data Modeling 223

How to Construct Data Models 225

Entity Discovery 225
The Context Data Model 226
The Key-Based Data Model 228
Generalized Hierarchies 231
The Fully Attributed Data Model 231

Analyzing the Data Model 234

What Is a Good Data Model? 234 Data Analysis 235 Normalization Example 235

Mapping Data Requirements to Locations 243

8 PROCESS MODELING 249

Introduction 250 An Introduction to Process Modeling 250 System Concepts for Process Modeling 252

External Agents 252

Data Stores 253
Process Concepts 253
Data Flows 258

The Process of Logical Process

Modeling 266

How to Construct Process Models 269

The Context Data Flow Diagram 270
The Functional Decomposition
Diagram 271
The Event-Response or Use-Case List 272
Event Decomposition Diagrams 275
Event Diagrams 276
The System Diagram(s) 278
Primitive Diagrams 279
Completing the Specification 279

9 OBJECT-ORIENTED ANALYSIS AND MODELING USING THE UML 293

An Introduction to Object-Oriented Modeling 294 System Concepts for Object Modeling 294

Objects, Attributes, Methods, and
Encapsulation 294
Classes, Generalization, and
Specialization 296
Object Class Relationships 299
Messages and Message Sending 300
Polymorphism 303

The UML Diagrams 304
The Process of Object Modeling 306

Modeling the Functional Description of the
System 306
Constructing the Analysis Use-Case
Model 306
Modeling the Use-Case Activities 309
Guidelines for Constructing Activity
Diagrams 314
Drawing System Sequence
Diagrams 317
Guidelines for Constructing System Sequence
Diagrams 319
Finding and Identifying the Business
Objects 319
Organizing the Objects and Identifying Their
Relationships 324

10 FEASIBILITY ANALYSIS AND THE SYSTEM PROPOSAL 334

Introduction 335
Feasibility Analysis and the System
Proposal 335

Feasibility Analysis—A Creeping Commitment
Approach 335
Systems Analysis—Scope Definition
Checkpoint 337
Systems Analysis—Problem Analysis
Checkpoint 337
Systems Design—Decision Analysis
Checkpoint 337

Six Tests for Feasibility 338

Operational Feasibility 338
Technical Feasibility 338
Schedule Feasibility 339
Economic Feasibility 339

Cost-Benefit Analysis Techniques 339

How Much Will the System Cost? 339 What Benefits Will the System Provide? 340 Is the Proposed System Cost-Effective? 342

Feasibility Analysis of Candidate Systems 346

Candidate Systems Matrix 346 Feasibility Analysis Matrix 349

The System Proposal 351

Written Report 351 Formal Presentation 352

PART THREE

Systems Design Methods 363

11 SYSTEMS DESIGN 364

Introduction 365 What Is Systems Design? 365 Systems Design Approaches 365

> Model-Driven Approaches 366 Rapid Application Development 370 Systems Design Strategies 370

Systems Design for In-House Development—The "Build" Solution 372

Task 5.1—Design the Application Architecture 372

Task 5.2—Design the System Database(s) 372
Task 5.3—Design the System Interface 376
Task 5.4—Package Design
Specifications 377
Task 5.5—Update the Project Plan 378

Systems Design for Integrating Commercial Software—The "Buy" Solution 378

Task 4.1—Research Technical Criteria and Options 381
Task 4.2—Solicit Proposals or Quotes from Vendors 382
Task 5A.1—Validate Vendor Claims and Performances 382
Task 5A.2—Evaluate and Rank Vendor Proposals 384
Task 5A.3—Award (or Let) Contract and Debrief Vendors 384
Impact of Buy Decision on Remaining

12 APPLICATION ARCHITECTURE AND MODELING 391

Introduction 392
Application Architecture 392
Physical Data Flow Diagrams 393

Life-Cycle Phases 385

Physical Processes 393 Physical Data Flows 396 Physical External Agents 398 Physical Data Stores 398

Information Technology Architecture 399

Distributed Systems 399
Data Architectures—Distributed Relational
Databases 407
Interface Architectures—Inputs, Outputs, and
Middleware 409
Process Architectures—The Software
Development Environment 414

Modeling the Application Architecture of an Information System 416

Drawing Physical Data Flow
Diagrams 416
The Network Architecture 417
Data Distribution and Technology
Assignments 418
Process Distribution and Technology
Assignments 420
The Person/Machine Boundaries 420

13 DATABASE DESIGN 429

Introduction 430 Database Concepts for the Systems Analyst 430

Fields 430 Records 431 Files and Tables 432 Databases 432

Prerequisite for Database Design—
Normalization 438

Modern Database Design 438

Goals and Prerequisites to Database
Design 439

The Database Schema 439

Data and Referential Integrity 444

Roles 447

Database Distribution and Replication 447

Database Prototypes 448

Database Capacity Planning 448

Database Structure Generation 448

14 OUTPUT DESIGN AND PROTOTYPING 454

Introduction 455
Output Design Concepts and Guidelines 455

Distribution and Audience of Outputs 455 Implementation Methods for Outputs 458

How to Design and Prototype Outputs 463

Automated Tools for Output Design and Prototyping 463 Output Design Guidelines 466 The Output Design Process 466 Web-Based Outputs and E-Business 474

15 INPUT DESIGN AND PROTOTYPING 483

Introduction 484
Input Design Concepts and
Guidelines 484

Data Capture, Data Entry, and Data
Processing 484
Input Methods and Implementation 48
System User Issues for Input Design 489
Internal Controls—Data Editing for
Inputs 491

GUI Controls for Input Design 492

Common GUI Controls for Inputs 494 Advanced Input Controls 498

How to Design and Prototype Inputs 500

Automated Tools for Input Design and Prototyping 500 The Input Design Process 501 Web-Based Inputs and E-Business 507

16 USER INTERFACE DESIGN 513

Introduction 514
User Interface Design Concepts and
Guidelines 514

Types of Computer Users 514 Human Factors 515 Human Engineering Guidelines 516 Dialogue Tone and Terminology 517

User Interface Technology 517

Operating Systems and Web Browsers 517 Display Monitor 518 Keyboards and Pointers 518

Graphical User Interface Styles and Considerations 519

Windows and Frames 519
Menu-Driven Interfaces 520
Instruction-Driven Interfaces 526
Question-Answer Dialogues 527
Special Considerations for User Interface
Design 529

How to Design and Prototype a User Interface 533

> Automated Tools for User Interface Design and Prototyping 533 The User Interface Design Process 533

17 OBJECT-ORIENTED DESIGN AND MODELING USING THE UML 544

Introduction 545
The Design of an Object-Oriented System 545

Entity Classes 545. Interface Classes 545 Control Classes 546 Persistence Classes 546
System Classes 546
Design Relationships 547
Attribute and Method Visibility 547
Object Responsibilities 548

The Process of Object-Oriented Design 549

Refining the Use-Case Model 549
Modeling Class Interactions, Behaviors,
and States That Support the Use-Case
Scenario 551
Updating the Object Model to Reflect the
Implementation Environment 560

PART FOUR

Beyond Systems Analysis and Design 567

18 SYSTEMS CONSTRUCTION AND IMPLEMENTATION 568

Introduction 569
What Is Systems Construction and Implementation? 569

The Construction Phase 569

Task 6.1—Build and Test Networks
(if Necessary) 569
Task 6.2—Build and Test Databases 572
Task 6.3—Install and Test New Software
Packages (if Necessary) 572
Task 6.4—Write and Test New Programs 573

The Implementation Phase 574

Task 7.1—Conduct System Test 574
Task 7.2—Prepare Conversion Plan 574
Task 7.3—Install Databases 577
Task 7.4—Train Users 577
Task 7.5—Convert to New System 578

Photo Credits 584
Glossary/Index 585