

Wood-Plastic Composites

Anatole A. Klyosov

CONTENTS

Preface

Foreword-Overview: Wood-Plastic Composites 1 WPC: Pricing Restrictions, 11 WPC: Brands and Manufacturers, 15 Flexural Strength, 15 Flexural Modulus and Deflection, 17 Deck Boards, 17 Stair Treads, 18 Thermal Expansion-Contraction, 20 Shrinkage, 22 Slip Resistance, 24 Water Absorption, Swell, and Buckling, 26 Microbial Degradation, 29 Termite Resistance, 33 Flammability, 35 Oxidation and Crumbling, 36 Photooxidation and Fading, 40 Wood-Plastic Composites-Products, Trends, Market Size and Dynamics, and Unsolved (or Partially Solved) Problems, 42 WPC Products, 42 The Public View: Perception, 43

XXV

viii CONTENTS

WPC Market Size and Dynamics, 44 Competition on the WPC Market, 45 Unsolved (or Only Partially Solved) R & D Problems, 48

References, 49

2. Composition of Wood-Plastic Composite Deck Boards: Thermoplastics

50

Introduction, 50 Polyethylene, 51

Low-Density Polyethylene (LDPE), 54 Medium-Density Polyethylene (MDPE), 55 High-Density Polyethylene (HDPE), 55

Polypropylene, 56 Polyvinyl Chloride, 58 Acrylonitrile-Butadiene-Styrene Copolymer (ABS), 61 Nylon 6 and Other Polyamides, 62 Conclusion, 64

Addendum: ASTM Tests Covering Definitions of Technical Terms and Their Contractions Used in Plastic Industry and Specifications of Plastics, 67

ASTM D 883 "Standard Terminology Relating to Plastics", 67

ASTM D 1600 "Standard Terminology for Abbreviated Terms Relating to Plastics", 68

ASTM D 1784 "Standard Specifications for Rigid Poly(Vinyl Chloride) (PVC) Compounds and Chlorinated Poly(Vinyl Chloride) (CPVC) Compounds", 68

ASTM D 1972 "Standard Practice for Generic Marking of Plastic Products", 69

ASTM D 4066 "Standard Classification System for Nylon Injection and Extrusion Materials (PA)", 69

ASTM D 4101 "Standard Specification for Polypropylene Injection and Extrusion Materials", 70

ASTM D 4216 "Standard Specification for Rigid Poly(Vinyl Chloride) (PVC) and Related PVC and Chlorinated Poly(Vinyl Chloride) (CPVC) Building Products Compounds", 70

ASTM D 4396 "Standard Specification for Rigid Poly(Vinyl Chloride) (PVC) and Chlorinated Poly(Vinyl Chloride) (CPVC) Compounds for Plastic Pipe and Fittings Used in Nonpressure Applications", 70

ASTM D 4673 "Standard Classification System for Acrylonitrile— Butadiene-Styrene (ABS) Plastics and Alloys Molding and Extrusion Materials", 70

ASTM D 4976 "Standard Specification for Polyethylene Plastics Molding and Extrusion Materials". 71

CONTENTS ix

ASTM D 5203 "Standard Specification for Polyethylene Plastics Molding and Extrusion Materials from Recycled Postconsumer (HDPE) Sources", 72

ASTM D 6263 "Standard Specification for Extruded Rods and Bars Made from Rigid Poly(Vinyl Chloride) (PVC) and Chlorinated Poly(Vinyl Chloride) (CPVC)", 72

ASTM D 6779 "Standard Classification System for Polyamide Molding and Extrusion Materials (PA)", 73

References, 73

3. Composition of Wood-Plastic Composites: Cellulose and Lignocellulose Fillers

75

Introduction, 75

A Brief History of Cellulose Fillers in WPC in U.S. Patents, 78

Beginning of WPC: Thermosetting Materials, 79

Cellulose as a Reinforcing Ingredient in Thermoplastic

Compositions, 80

Improving Mechanical and Other Properties of WPC, 83

Improving the Compatibility of the Filler with the Polymeric Matrix:

Coupling Agents, 84

Plastics Beyond HDPE in Wood-Plastic Composite Materials, 87

Cellulose-Polyolefin Composite Pellets, 89

Foamed Wood-Plastic Composites Materials, 90

Biodegradable Wood-Plastic Composites, 91

General Properties of Lignocellulosic Fiber as Fillers, 92

Chemical Composition, 92

Detrimental Effects of Lignin, 95

Detrimental Effects of Hemicellulosics: Steam Explosion, 96

Aspect Ratio, 97

Density (Specific Gravity), 98

Particle Size, 99

Particle Shape, 99

Particle Size Distribution, 100

Particle Surface Area, 100

Moisture Content, the Ability to Absorb Water, 100

The Ability of Filler to Absorb Oil, 101

Flammability, 101

Effect on Mechanical Properties of the Composite Material, 101

Effect on Fading and Durability of Plastics and Composites, 103

Effect on Hot Melt Viscosity, 104

Effect on Mold Shrinkage, 105

Wood Fiber, 105

X CONTENTS

Wood Flour, 105 Sawdust, 106 Rice Hulls, 106

VOC from Rice Hulls, 108

Long Natural Fiber, 110 Papermaking Sludge, 111 Biodac[®], 112

VOC from Biodac[®], 112 Rice Hulls and Biodac[®] as Antioxidants in WPC, 114

References, 115

4. Composition of Wood-Plastic Composites: Mineral Fillers

123

Introduction, 123

General Properties of Mineral Fillers, 125

Chemical Composition, 125

Aspect Ratio, 125

Density (Specific Gravity), 125

Particle Size, 126

Particle Shape, 127

Particle Size Distribution, 128

Particle Surface Area, 128

Moisture Content: The Ability to Absorb Water, 128

The Ability to Absorb Oil, 129

Flame Retardant Properties, 129

Effect on Mechanical Properties of the Composite Material, 129

Effect on Hot Melt Viscosity, 131

Effect on Mold Shrinkage, 131

Thermal Properties, 132

Color: Optical Properties, 132

Effect on Fading and Durability of Plastics and Composites, 132

Health and Safety, 133

Fillers, 133

Calcium Carbonate (CaCO₃), 133

Talc, 137

Biodac[®] (a Blend of Cellulose and Mineral Fillers), 141

Silica (SiO₂), 145

Kaolin Clay (Al₂O₃•2SiO₂•2H₂O), 146

Mica, 146

Wollastonite (CaSiO₃), 147

Glass Fibers, 147

CONTENTS xi

Fly Ash, 148 Carbon Black, 154 Nanofillers and Nanocomposites, 154 Conclusions, 156 References, 159 5. Composition of Wood-Plastic Composites: Coupling Agents 161 Introduction, 161 Why Such a Task?, 162 A Brief Overview of the Chapter, 163 Maleated Polyolefins (Polybond, Integrate, Fusabond, Epolene, Exxelor, Orevac, Lotader, Scona, and Unnamed Series), 165 Organosilanes (Dow Corning Z-6020, Momentive A-172 and Others), 171 MetablenTM A3000 (Acrylic-Modified Polytetrafluoroethylene, PTFE), 173 Other Coupling Agents, 174 Effect of Coupling Agents on Mechanical Properties of Wood-Plastic Composites: Experimental Data, 174 Mechanisms of Crosslinking, Coupling and/or Compatibilizing Effects, 180 Spectroscopic Studies, 180 Rheological Studies, 186 Kinetic Studies, 188 Other Considerations, 189 Effect of Coupling Agents on WPC Properties: A Summary, 191 Effect on Flexural and Tensile Modulus, 192 Effect on Flexural and Tensile Strength, 193 Effect on Water Absorption, 194 Lubricants, Compatible and not Compatible with Coupling Agent, 194 References, 199 6. Density (Specific Gravity) of Wood-Plastic Composites and Its Effect on WPC Properties 202 Introduction, 202 Effect of Density (Specific Gravity) of WPC, 205 Effect on Flexural Strength and Modulus, 205 Effect on Oxidation and Degradation, 205 Effect on Flammability, Ignition, Flame Spread, 208 Effect on Moisture Content and Water Absorption, 209 Effect on Microbial Contamination/Degradation, 210 The Effect on Shrinkage, 211

The Effect on the Coefficient of Friction (The Slip Coefficient), 211

xii CONTENTS

Density of Cross-Sectional Areas of Hollow Profiles of GeoDeck WPC Boards, 212

Densities and Weight of Some Commercial Wood–Plastic Deck Boards, 215 Determination of Density of Wood–Plastic Composites Using a Sink/Float Method, 216

ASTM Tests Recommended for Determination of the Specific Gravity (Density), 218

ASTM D 6111 "Standard Test Method for Bulk Density and Specific Gravity of Plastic Lumber and Shapes by Displacement", 218

ASTM D 792 "Standard Test Method for Density and Specific Gravity (Relative Density) of Plastics by Displacement", 219

ASTM D 1505 "Standard Test Method for Density of Plastics by the Density-Gradient Technique", 220

ASTM D 1622 "Standard Test Method for Apparent Density of Rigid Cellular Plastics", 222

ASTM D 1895 "Standard Test Methods for Apparent Density, Bulk Factor, and Pourability of Plastic Materials", 223

References, 224

7. Flexural Strength (MOR) and Flexural Modulus (MOE) of Composite Materials and Profiles 225

Introduction, 225

Basic Definitions and Equations, 225 Moment of Inertia, 228 Bending Moment, 231

ASTM Recommendations, 234

ASTM D 790, "Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials", 234

ASTM D 6109, "Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastic Lumbers", 238

ASTM D 6272, "Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending", 241

Flexural Strength of Composite Deck Boards, 244

English Units and SI Units, 244 Center Point Load, or Concentrated Load (3-pt Load), 244 Third-Point Load (4-pt. Load, or 1/3-Span Load), 247

Flexural Strength of Composite Deck Boards, 248 Flexural Strength of Materials Versus Profiles, 251

Flexural Strength for the Same Material but for Different Profiles, 252

Comparison of Center-Point Load and Third-Point Load, 252

Quarter-Point Load (4-pt Load, 1/4-Point Load), 253

Uniformly Distributed Load, 255

Effect of Temperature on Flexural Strength of Composite Materials, 256

Effect of Commercial HDPE Materials on Flexural Strength of Composite Deck Boards, 257

Effect of Density (Specific Gravity) of Composite Materials on Flexural Strength, 258

Flexural Strength of Neat HDPE and Other Plastics, and Comparisons with that for WPCs, 258

Effect of Plastic Content on Flexural Strength of Composite Materials, 259 A Deck Board Used as a Stair Tread, 259

Flexural Modulus of Composite Deck Boards, 264

Center-Point Load, or Concentrated Load (3-pt Load), 264

Third-Point Load (4-pt. Load, or 1/3-Span Load), 265

Flexural Modulus of Composite Deck Boards, 266

Flexural Modulus of Materials Versus Profiles, 267

Flexural Modulus for the Same Material but for Different Profiles: Solid and Hollow Deck Boards, 267

Comparison of Center-Point Load and Third-Point Load, 270

Quarter-Point Load (4-pt Load, 1/4-Point Load), 270

Uniformly Distributed Load, 272

Snow on a Deck, 272

Strength, 272 Deflection, 273

Effect of Temperature on Flexural Modulus of Composite Materials, 274 Effect of Commercial HDPE on Flexural Modulus of Composite Deck Boards, 275

Effect of Density (Specific Gravity) on Flexural Modulus, 276 Effect of Plastic Content on Flexural Modulus of Composite Materials, 276

Flexural Modulus of Neat HDPE and Other Plastics and Comparisons with that for WPCs, 278

A Deck Board Used as a Stair Tread: A Critical Role of Flexural Modulus, 280

Deflection of Composite Materials: Case Studies, 281

Deflection and Bending Moment of a Soundwall Under Windloads, 281 Deflection of a Fence Board, 287

Deflection of WPC Joists, 288

Deflection of a Deck Under a Hot Tub, 289

xiv CONTENTS

Deflection of a Hollow Deck Board Filled with Hot Water, 290 Deflection and Creep of Composite Deck Boards, 291

Guardrail Systems, 302

Composite (and PVC) Railing Systems for Which ICC-ES Reports were Issued Until November 2006, 307

Combined Flexural and Shear Strength: a "Shotgun" Test, 311 Mathematical Modeling of WPCs and the Real World, 312

Verification of the Mathematical Model with Actual Conventional and Modified Composite Boards, 315

Weight, 315 Flexural Strength, 317 Flexural Modulus, 317 Impact Resistance, 317

References, 318

8. Compressive and Tensile Strength and Modulus of Composite Profiles

319

Introduction, 319
Basic Definitions and Equations, 320
ASTM Recommendations, 320

ASTM D 638, "Standard Test Methods for Tensile Properties of Plastics", 320

ASTM D 5083 "Test Methods for Tensile Properties of Reinforced Thermosetting Plastics Using Straight-Sided Specimens", 323

ASTM D 695, "Standard Test Method for Compressive Properties of Rigid Plastics", 324

ASTM D 6108, "Standard Test Methods for Compressive Properties of Unreinforced and Reinforced Plastic Lumbers", 325

Tensile Strength of Composite Materials, 326 Compressive Strength of Composite Materials: Examples, 328 Tensile Modulus of Elasticity of Composite Materials, 329 Compressive Modulus of Composite Materials, 331 References, 332

9. Linear Shrinkage of Extruded Wood-Plastic Composites

333

Introduction, 333
Origin of Shrinkage, 333
Size of Shrinkage, 336
Effect of Density (Specific Gravity) of WPC on Its Shrinkage, 337
Effect of Extrusion Regime on Shrinkage, 338
Annealing of Composite Boards, 338

CONTENTS

Warranty Claims: Geodeck Composite Deckboards, 340 Examples of Composite Boards Shrinkage on a Deck, 345 References, 355

10. Temperature Driven Expansion-Contraction of Composite Deck Boards: Linear Coefficient of Thermal Expansion-Contraction

356

Introduction, 356

Linear Coefficient of Expansion-Contraction, 357

Some Reservations in Applicability of Coefficients of Expansion-Contraction, 358

ASTM Tests Recommended for Determination of the Linear Coefficient of Thermal Expansion—Contraction, 359

ASTM D 696 "Standard Test Method for Coefficient of Linear Thermal Expansion of Plastics Between -30°C and 30°C with a Vitreous Silica Dilatometer". 359

ASTM D 6341 "Standard Test Method for Determination of the Linear Coefficient of Thermal Expansion of Plastic Lumber and Plastic Lumber Shapes Between -30 and 140°F (-34.4 and 60°C)", 361

ASTM E 228 "Standard Test Method for Linear Thermal Expansion of Solid Materials with a Vitreous Silica Dilatometer", (Withdrawn), 361

Linear Coefficient of Thermal Expansion-Contraction for Wood-Plastic Composites. Effect of Fillers and Coupling Agents, 362 References, 368

11. Slip Resistance and Coefficient of Friction of Composite Deck Boards

369

Introduction, 369

Definitions, 369

Explanations and Some Examples, 371

Slip Resistance of Plastics, 371

Slip Resistance of Wood Decks, 373

Slip Resistance of Wood-Plastic Composite Decks, 373

ASTM Tests Recommended for Determining Static Coefficient of Friction, 376

ASTM D 2047 "Standard Test Method for Static Coefficient of Friction of Polish-Coated Floor Surfaces as Measured by the James Machine", 376

ASTM F 1679 "Standard Test Method for Using a Variable Incidence Tribometer (VIT)", 376

ASTM D 2394 "Standard Method for Simulated Service Testing of Wood and Wood-Base Finish Flooring", 377

Slip Resistance Using an Inclined-Plane Method, 378

xvi CONTENTS

Effect of Formulation of Composite Deck Boards on Slip Resistances: Slip Enhancers, 381
References, 382

12. Water Absorption by Composite Materials and Related Effects 383

Introduction, 383

"Near-Surface" Versus "Into the Bulk" Distribution of Absorbed Water in Composite Materials, 384

Effect of Mineral Fillers on Water Absorption, 385

Swelling (Dimensional Instability), Pressure Development, and Buckling, 386

Short- and Long-Term Water Absorption, 396

ASTM Recommendations, 399

ASTM D 570, "Standard Test Methods for Water Absorption of Plastics", 399

ASTM D 1037, "Standard Test Method for Evaluating Properties of Wood-Based Fiber and Particle Panel Materials", 400

ASTM D 2842 "Test Methods for Water Absorption of Rigid Cellular Plastics", 402

ASTM D 6662 "Standard Specification for Polyolefin-Based Plastic Lumber Decking Boards" 402

ASTM D 7032 "Standard Specification for Establishing Performance Ratings for Wood–Plastic Composite Deck Boards and Guardrail Systems (Guards or Handrails)", 402

Effect of Cellulose Content in Composite Materials on Water Absorption, 403

Effect of Board Density (Specific Gravity) on Water Absorption, 403 Moisture Content of Wood and Wood–Plastic Composites, 405 Effect of Water Absorption on Flexural Strength and Modulus, 406 Freeze–Thaw Resistance, 407

Effect of Board Density on Freeze-Thaw Resistance — A Case Study, 407 Effect of Board Density and Weathering on Freeze-Thaw Resistance— A Case Study, 408

Effect of Multiple Freeze-Thaw Cycles, 409

Comparison of Water Absorption of Some Composite Deck Boards Available in the Market, 409
References. 411

13. Microbial Degradation of Wood-Plastic Composite Materials and "Black Spots" on the Surface: Mold Resistance

412

Introduction, 412

Microbial Effects on Wood-Plastic Composites, 412

CONTENTS xvii

Mold and Spores, 413

Moisture and Ventilation: Critical Moisture Content, 413

Wood Decay Fungi, 414

Biocides and "Mold Resistance", 415

Preservatives for Wood Lumber, 416

CCA, 416

ACQ, 417

PCP (The U.S. EPA Data), 417

Creosote (The U.S. EDA Data), 417

Microorganisms Active in Degradation and Staining of Composite Materials, 418

Molds, 418

Black Mold, 424

Black Algae, 426

Case Study 1: Staining with a Microbial Pigment, 427

Case Study 2: Deck as a Mold Incubator, 428

Case Study 3: Black Mold due to Low Density of a Composite Material and High Moisture, 429

Microbial Infestation of Wood-Plastic Composite Materials, 430

Requirements for Microbial Growth on Wood and Wood-Plastic Composites, 430

Sensitivity and Resistance of Composite Materials to Microbial Degradation: Examples, 431

ASTM Tests for Microbial Growth and Degradation of Wood-Plastic Composites, 434

ASTM D 1413 "Standard Test Method for Wood Preservatives by Laboratory Soil-Block Cultures", 434

Examples: Wood, 436

Examples: Wood-Plastic Composites, 436

ASTM D 2017 "Standard Method of Accelerated Laboratory Test of Natural Decay Resistance of Woods" (Discontinued), 438

ASTM E 2180 "Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent(s) in Polymeric or Hydrophobic Materials", 438

ASTM G 21"Standard Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi", 439

Effects of Formulation on Sensitivity and Resistance of Wood-Plastic Composites to Microbial Degradation, 440

Biocides Used (Actually or Under Consideration) in Wood-Plastic Composites, 440

xviii CONTENTS

Zinc Borate, (e.g., Borogard [U.S. Borax], Fiberguard [Royce International]), 440

Barium Metaborate, Busan, 444

Folpet, Fungitrol 11, Intercide TMP (carboximide), 444

Chlorothalonil (tetrachloroisophthalonitrile), Nuocide 960, 449

OBPA, Intercide ABF (10,10'- Oxybisphenoxyarsine), Vinizene BP 5-5, 449

IPBC, Polyphase[®], Troy[®], Intercide IBF (2-iodo-2-propynyl-*n*-butylcarbamate, 3-iodo-2-propynyl-*n*-butylcarbamate), 451

OIT, DCOIT, Octhilinone, Micro-Chek, Intercide OBF (2-*n*-Octyl-4-isothiazolin-3-one), 451

Zinc Pyrithione, Zinc Omadine, Intercide ZNP, Zinc Derivative of Mercaptopyridine 1-oxide, 452

Thiabendazole, Irgaguard F3000, 2-(4-Thiazolyl)-1*H*-benzimidazole, 4-(2-Benzimidazolyl)thiazole, Thiabendazole, MK-360, TBZ, 453

461

Biocides: Accelerated Laboratory Data and the Real World, 453 References, 459

14. Flammability and Fire Rating of Wood-Plastic Composites

Introduction, 461

Flammability of Wood, 462

Ignition of Composite Materials, 463

Flame Spread Indexes and Fire Rating of Composite Materials, 464

Effect of Mineral Fillers on Flammability, 467

Smoke and Toxic Gases, and Smoke Development Index. 467

Flame Retardants for Plastics and Composite Materials, 468

Flame Retardants in Plastics, 471

Restrictions or Prohibitions of Some Brominated Flame Retardants, 471 Chlorine-Containing Flame Retardants, 472

ATH (Aluminum Trihydrate) and MDH (Magnesium Hydroxide), 473

ATH Dehydration: A Quantitative Approach, 474

Flame Retardants with Wood-Plastic Composites, 476

Nanoparticles as Flame Retardants, 476

ASTM Recommendations, 477

ASTM D 635 "Standard Test Method for Rate of Burning and/or Extent and Time of Burning of Plastics in a Horizontal Position", 478

ASTM D 1929 "Standard Test Method for Determining Ignition Temperature of Plastics", 478

ASTM E 84, "Standard Test Method for Surface Burning Characteristics of Building Materials", 480

ASTM E 1354 "Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter", 482 CONTENTS xix

E 162 "Standard Test Method for Surface Flammability of Materials Using a Radiant Heat Energy Source", 483 E 662 "Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials", 484

Fire Performance of Composite Decks and Deck Boards, 485 References, 491

15. Thermo- and Photooxidative Degradation and Lifetime of Composite Building Materials

493

Introduction. Lifetime of Plastics and Plastic-based Composites: Examples, 493 Thermooxidation, Photooxidation, Oxidative Degradation, and Product Crumbling and Failure, 496

Factors Accelerating the Oxidative Degradation of Composites, 502

Density (Specific Gravity) of the Composite, 503

Temperature, 508

The Physical and the Chemical Structure of the Polymer, 514

History of Plastic (Virgin, Recycled), 516

The Type and Amount of Cellulose Fiber, 516

The Type and Amount of Mineral Fillers, 517

The Presence of Stress, 517

The Presence of Metal Catalysts, 522

The Presence of Moisture, 524

Antioxidants and Their Amounts, 526

Solar Radiation (UV Light), 531

Amount of Added Regrinds, If Any, 540

ASTM Recommendations, 541

ASTM Tests for Oxidative Induction Time, 541

ASTM D 3895 "Standard Test Method for Oxidative Induction Time of Polyolefins by Differential Scanning Calorimetry", 541

ASTM D 5885 "Standard Test Method for Oxidative Induction Time of Polyolefin Geosynthetics by High-Pressure Differential Scanning Calorimetry", 545

ASTM Tests for Determination of Phenolic Antioxidants in Plastics, 546

ASTM D 1996 "Standard Test Method for Determination of Phenolic Antioxidants and Erucamide Slip Additives in Low-Density Polyethylene Using Liquid Chromatography", 547

ASTM D 5524 "Standard Test Method for Determination of Phenolic Antioxidants in High-Density Polyethylene Using Liquid Chromatography", 548

ASTM D 5815 "Standard Test Method for Determination of Phenolic Antioxidants and Erucamide Slip Additives in Linear Low-Density Polyethylene Using Liquid Chromatography", 548

XX CONTENTS

ASTM D 6042 "Standard Test Method for Determination of Phenolic Antioxidants and Erucamide Slip Additives in Polypropylene Homopolymer Formulations Using Liquid Chromatography", 548

ASTM D 6953 "Standard Test Method for Determination of Antioxidants and Erucamide Slip Additives in Polyethylene Using Liquid Chromatography", 548

ASTM D 3012 "Standard Test Method for Thermal-Oxidative Stability of Polypropylene Using a Specimen Rotator Within an Oven, 549

ASTM D 5510 "Standard Practice for Heat Aging of Oxidatively Degradable Plastics", 550

Surface Temperature of Composite Decking and Railing Systems, 550 Life Span of Zero-Antioxidant GeoDeck Decks in Various Areas of the United States, 556

The OIT and Lifetime of Composite Deck Boards, 564

Durability (in Terms of Oxidative Degradation) of Wood-Plastic Composite Deck Boards Available in the Current Market, 565

Oxidative Degradation and Crumbling of GeoDeck Deck Boards: History of the Case and Correction of the Problem, 567

Density, Porosity, and Mechanical Properties of GeoDeck before the Problem had Emerged, 567

Emerging of the Problem, 569

Density (Specific Gravity) of GeoDeck Boards in Pre-October 2003, 569 Correction of the Crumbling Problem, 570

Antioxidant Level, 570

Density, 571

The OIT Procedure: Proxy of Lifetime at Accelerated Oxidation, 571

Accelerated (Artificial) Weathering, 572

Air-Flow Oven, 573

Addendum: Test Method for Oxidative Induction Time of Filled Composite Materials by Differential Scanning Calorimetry, 574 Case Studies, 576

GeoDeck Decks in Arizona, 576 GeoDeck Decks in Massachusetts, 576

GeoDeck Voluntary Recall, 581

Problem GeoDeck Decks: Installation Time and Warranty Claims, 582 References, 584

16. Photooxidation and Fading of Composite Building Materials

585

Introduction, 585

How Fading is Measured, 586

Fading: Some Introductory Definitions, 588

Accelerated and Natural Weathering of Wood-Plastic Composite Materials and a Correlation (or a Lack of It) Between Them: The Acceleration Factor, 590

Fading of Commercial Wood-Plastic Composite Materials, 596

Fading of Composite Deck Boards Versus Their Crumbling Due to Oxidation, 600

Factors Accelerating or Slowing Down Fading of Composites, 601

Density (Specific Gravity) of the Composite, 601

Temperature, 602

UV Absorbers and Their Amounts, 602

Pigments and Their Amounts, 603

Antioxidants and Their Amounts, 605

History of Plastics (Virgin, Recycled), 605

Effect of Moisture in the Composite, 605

The Type and Amount of Cellulose Fiber, 606

Extruded Versus Injection-Molded Wood-Plastic Composite Materials. 606

ASTM Recommendations, 607

ASTM D 2565 "Standard Practice for Xenon-Arc Exposure of Plastics Intended for Outdoor Applications", 607

ASTM D 1435 "Standard Practice for Outdoor Weathering of Plastics", 608

ASTM D 4329 "Practice for Fluorescent UV Exposure of Plastics", 608

ASTM D 4364 "Practice for Performing Outdoor Accelerated Weathering Tests of Plastics Using Concentrated Sunlight", 609

ASTM D 4459 "Practice for Xenon-Arc Exposure of Plastics Intended for Indoor Applications", 609

ASTM D 5071 "Practice for Exposure of Photodegradable Plastics in a Xenon-Arc Apparatus", 610

ASTM D 5208 "Practice for Fluorescent Ultraviolet (UV) Exposure of Photodegradable Plastics", 610

ASTM D 5272 "Practice for Outdoor Exposure Testing of Photodegradable Plastics", 611

ASTM G 155 "Standard Practice for Operating Xenon-Arc Light Apparatus for Exposure of Nonmetallic Materials", 611

Addendum, 612

References, 616

17. Rheology and a Selection of Incoming Plastics for Composite Materials

617

Introduction: Rheology of Neat and Filled Plastics, Composite Materials, and Regrinds, 617

xxii CONTENTS

Basic Definitions and Equations, 618

Shear Rate, Shear Stress, Shear Viscosity, Dynamic Viscosity, Apparent Viscosity, Limiting Viscosity, 618

Shear-Thinning Effect and the Power Law Equation, 620

Volumetric Flow Rate and a Pressure Gradient Along the Capillary, 623 Wall Slip Phenomenon, 625

The Rabinowitsch Correction, 626

ASTM Recommendations in the Area of Capillary Rheometry, 627

ASTM D 1238-04, "Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer", 628

ASTM D 3835-02, "Standard Test Method for Determination of Properties of Polymeric Materials by Means of a Capillary Rheometer", 629

ASTM D 5422-03, "Standard Test Method for Measurement of Properties of Thermoplastic Materials by Screw-Extrusion Capillary Rheometer", 630

ASTM Recommendations in the Area of Rotational Rheometry, 630

ASTM D 4440-01, "Standard Test Method for Plastics: Dynamic Mechanical Properties Melt Rheology", 631

ASTM D 4065-01, "Standard Practice for Plastics: Dynamic Mechanical Properties: Determination and Report of Procedures", 632

Common Observations, 633

Neat Plastics, 633

Molecular Weight of Polyethylenes and Viscosity of Their Hot Melts. 633

Effect of Temperature on Viscosity, 633

The Power-Law Index of Some Neat Plastics, 635

The Power-Law Index and Molecular Weight Distribution, 636

Composite Materials, 636

Rheology of Filled Plastics and Wood Plastic Composites, 636 Filler Increases the Dynamic Viscosity, 637

Viscosity and the Power-Law Index of Wood-Plastic Composites Materials, 638

Steady Shear Viscosity and Dynamic Viscosity Data, 639

Capillary Rheometer and an Extruder: Are They in Agreement?, 643 Extrudate Swell, 643

Almost Uncharted Areas of Composite and Plastic Rheology, 644

Effect of Particle Size of Filler on Rheology of Wood-Plastic Composites, 644

CONTENTS xxiii

Effect of Coupling Agents, Lubricants, and Polymer Processing Additives, 645

Varying Plastic Sources—Which to Choose for Composite Materials?, 647

Rheology of Regrinds of Wood-Plastic Composites, 651 Melt Fracture of Plastics and Their Composites and Regrinds:

Surface Tearing, 656

References, 670

Index

673