

DIFFRACTION, FOURIER OPTICS AND IMAGING

OKAN K. ERSOY

Wiley Series in Pure and Applied Optics . Bahaa E. A. Saleh, Series Editor

Contents

Pre	Preface			
1.	Diff	raction, Fourier Optics and Imaging	1	
	1.1	Introduction	1	
	1.2	Examples of Emerging Applications with Growing		
		Significance	2	
		1.2.1 Dense Wavelength Division Multiplexing/Demultiplexing		
		(DWDM)	3	
		1.2.2 Optical and Microwave DWDM Systems	3	
		1.2.3 Diffractive and Subwavelength Optical Elements	3	
		1.2.4 Nanodiffractive Devices and Rigorous Diffraction Theory	4	
		1.2.5 Modern Imaging Techniques	4	
2.	Linear Systems and Transforms		6	
	2.1	Introduction	6	
	2.2	Linear Systems and Shift Invariance	7	
	2.3	Continuous-Space Fourier Transform	10	
	2.4	Existence of Fourier Transform	11	
	2.5	Properties of the Fourier Transform	12	
	2.6	Real Fourier Transform	18	
	2.7	Amplitude and Phase Spectra	20	
	2.8	Hankel Transforms	21	
3.	Fundamentals of Wave Propagation		25	
	3.1	Introduction	25	
	3.2	Waves	26	
	3.3	Electromagnetic Waves	31	
	3.4	Phasor Representation	33	
	3.5	Wave Equations in a Charge-Free Medium	34	
	3.6	Wave Equations in Phasor Representation		
		in a Charge-Free Medium	36	
	3.7	Plane EM Waves	37	
4.	Sca	Scalar Diffraction Theory		
	4.1	Introduction	41	
	4.2	Helmholtz Equation	42	

vi CONTENTS

	4.3	Angular Spectrum of Plane Waves	44	
	4.4	Fast Fourier Transform (FFT) Implementation of the Angular		
		Spectrum of Plane Waves	47	
	4.5	The Kirchoff Theory of Diffraction	53	
		4.5.1 Kirchoff Theory of Diffraction	55	
		4.5.2 Fresnel–Kirchoff Diffraction Formula	56	
	4.6	The Rayleigh-Sommerfeld Theory of Diffraction	57	
		4.6.1 The Kirchhoff Approximation	59	
		4.6.2 The Second Rayleigh-Sommerfeld Diffraction Formula	59	
	4.7	Another Derivation of the First Rayleigh-Sommerfeld		
		Diffraction Integral	59	
	4.8	The Rayleigh-Sommerfeld Diffraction Integral For		
		Nonmonochromatic Waves	61	
5.	Fres	nel and Fraunhofer Approximations	63	
	5.1	Introduction	63	
	5.2	Diffraction in the Fresnel Region	64	
	5.3	FFT Implementation of Fresnel Diffraction	72	
	5.4	Paraxial Wave Equation	73	
	5.5	Diffraction in the Fraunhofer Region	74	
	5.6	Diffraction Gratings	76	
	5.7	Fraunhofer Diffraction By a Sinusoidal Amplitude Grating	78	
	5.8	Fresnel Diffraction By a Sinusoidal Amplitude Grating	79	
	5.9	Fraunhofer Diffraction with a Sinusoidal Phase Grating	81	
	5.10	Diffraction Gratings Made of Slits	82	
6.	Inve	Inverse Diffraction		
	6.1	Introduction	84	
	6.2	Inversion of the Fresnel and Fraunhofer Representations	84	
	6.3	Inversion of the Angular Spectrum Representation	84 85	
	6.4	Analysis	86 86	
	0.1	7. Mary 515	00	
7.	Wide-Angle Near and Far Field Approximations for Scalar Diffraction			
			90	
	7.1	Introduction	90	
	7.2	A Review of Fresnel and Fraunhofer Approximations	91	
	7.3	The Radial Set of Approximations	. 93	
	7.4	Higher Order Improvements and Analysis	95	
	7.5	Inverse Diffraction and Iterative Optimization	96	
	7.6	Numerical Examples	97	
	7.7	More Accurate Approximations	110	
	7.8	Conclusions	111	

vii

8.	Geom	etrical Optics	112		
	8.1	Introduction	112		
	8.2	Propagation of Rays	112		
	8.3	The Ray Equations	117		
	8.4	The Eikonal Equation	118		
	8.5	Local Spatial Frequencies and Rays	120		
		Matrix Representation of Meridional Rays	123		
	8.7	Thick Lenses	130		
	8.8	Entrance and Exit Pupils of an Optical System	132		
9.		Fourier Transforms and Imaging with			
	Cohe	erent Optical Systems	134		
	9.1	Introduction	134		
	9.2	Phase Transformation With a Thin Lens	134		
	9.3	Fourier Transforms With Lenses	136		
		9.3.1 Wave Field Incident on the Lens	136		
		9.3.2 Wave Field to the Left of the Lens	137		
		9.3.3 Wave Field to the Right of the Lens	138		
	9.4	Image Formation As 2-D Linear Filtering	139		
		9.4.1 The Effect of Finite Lens Aperture	141		
	9.5	Phase Contrast Microscopy	142		
	9.6	Scanning Confocal Microscopy	144		
		9.6.1 Image Formation	144		
	9.7	Operator Algebra for Complex Optical Systems	147		
10.	Imag	ging with Quasi-Monochromatic Waves	153		
	10.1	Introduction	153		
	10.2	Hilbert Transform	154		
	10.3	Analytic Signal	157		
	10.4	Analytic Signal Representation of a Nonmonochromatic			
		Wave Field	161		
	10.5	Quasi-Monochromatic, Coherent, and Incoherent Waves	162		
	10.6		162		
	10.7	Imaging With Quasi-Monochromatic Waves	164		
		10.7.1 Coherent Imaging	165		
		10.7.2 Incoherent Imaging	166		
	10.8	Frequency Response of a Diffraction-Limited			
		Imaging System	166		
		10.8.1 Coherent Imaging System	166		
		10.8.2 Incoherent Imaging System	167		
	10.9		171		
		10.9.1 Practical Considerations	172		
	10.1	0 Aberrations	173		
		10.10.1 Zernike Polynomials	174		

viii CONTENTS

11.	Optic	al Devices Based on Wave Modulation	177
	11.1	Introduction	177
	11.2	Photographic Films and Plates	177
	11.3	Transmittance of Light by Film	179
	11.4	Modulation Transfer Function	182
	11.5	Bleaching	183
	11.6	Diffractive Optics, Binary Optics, and Digital Optics	184
	11.7	E-Beam Lithography	185
		11.7.1 DOE Implementation	187
12.	Wave	Propagation in Inhomogeneous Media	188
	12.1	Introduction	188
	12.2	Helmholtz Equation For Inhomogeneous Media	189
	12.3	Paraxial Wave Equation For Inhomogeneous Media	189
	12.4	Beam Propagation Method	190
		12.4.1 Wave Propagation in Homogeneous Medium with	
		Index n	191
		12.4.2 The Virtual Lens Effect	192
	12.5	Wave Propagation in a Directional Coupler	193
		12.5.1 A Summary of Coupled Mode Theory	193
		12.5.2 Comparison of Coupled Mode Theory and BPM	104
		Computations	194
13.	Holog	graphy	198
	13.1	Introduction	198
	13.2	Coherent Wave Front Recording	199
		13.2.1 Leith–Upatnieks Hologram	201
	13.3	Types of Holograms	202
		13.3.1 Fresnel and Fraunhofer Holograms	203
		13.3.2 Image and Fourier Holograms	203
		13.3.3 Volume Holograms	203
	10.4	13.3.4 Embossed Holograms	205
	13.4	Computer Simulation of Holographic Reconstruction	205
	13.5	Analysis of Holographic Imaging and Magnification	206
	13.6	Aberrations	210
14.	-	lization, Superresolution, and Recovery	212
	of M	issing Information	212
	14.1	Introduction	212
	14.2	Apodization	213
		14.2.1 Discrete-Time Windows	215
	14.3	Two-Point Resolution and Recovery of Signals	217
	14.4	Contractions	219
		14.4.1 Contraction Mapping Theorem	220

CONTENTS ix

	14.5	An Iterative Method of Contractions for Signal Recovery	221
	14.6	Iterative Constrained Deconvolution	223
	14.7	Method of Projections	225
	14.8	Method of Projections onto Convex Sets	227
	14.9	Gerchberg-Papoulis (GP) Algorithm	229
	14.10	Other POCS Algorithms	229
	14.11	Restoration From Phase	230
	14.12	Reconstruction From a Discretized Phase Function	
		by Using the DFT	232
	14.13	Generalized Projections	234
	14.14	Restoration From Magnitude	235
		14.14.1 Traps and Tunnels	237
	14.15	Image Recovery By Least Squares and the	
		Generalized Inverse	237
	14.16	Computation of H ⁺ By Singular Value	
		Decomposition (SVD)	238
	14.17	The Steepest Descent Algorithm	240
	14.18	The Conjugate Gradient Method	242
15.	Diffractive Optics I		
	15.1	Introduction	244
	15.2	Lohmann Method	246
	15.3	Approximations in the Lohmann Method	247
	15.4	Constant Amplitude Lohmann Method	248
	15.5	Quantized Lohmann Method	249
	15.6	Computer Simulations with the Lohmann Method	250
	15.7	A Fourier Method Based on Hard-Clipping	254
	15.8	A Simple Algorithm for Construction of 3-D Point	
		Images	257
		15.8.1 Experiments	259
	15.9	The Fast Weighted Zero-Crossing Algorithm	261
		15.9.1 Off-Axis Plane Reference Wave	264
		15.9.2 Experiments	264
	15.10	One-Image-Only Holography	265
		15.10.1 Analysis of Image Formation	268
		15.10.2 Experiments	270
	15.11	Fresnel Zone Plates	272
16.	Diffractive Optics II		
	16.1	Introduction	275
	16.2	Virtual Holography	275
		16.2.1 Determination of Phase	276
		16.2.2 Aperture Effects	278
		16.2.3 Analysis of Image Formation	279

X CONTENTS

		16.2.4 Information Capacity, Resolution, Bandwidth, and	
		Redundancy	282
		16.2.5 Volume Effects	283
		16.2.6 Distortions Due to Change of Wavelength and/or	
		Hologram Size Between Construction and	
		Reconstruction	284
		16.2.7 Experiments	285
	16.3	The Method of POCS for the Design of Binary	
		DOE	287
	16.4	Iterative Interlacing Technique (HT)	289
		16.4.1 Experiments with the IIT	291
	16.5	Optimal Decimation-in-Frequency Iterative Interlacing	
		Technique (ODIFIIT)	293
		16.5.1 Experiments with ODIFIIT	297
	16.6	Combined Lohmann-ODIFIIT Method	300
		16.6.1 Computer Experiments with the Lohmann-ODIFIIT	500
		Method	301
17.	Comr	puterized Imaging Techniques I:	
17.		puterized imaging Techniques 1; netic Aperture Radar	204
	Synth	-	306
	17.1	Introduction	306
	17.2	, I	306
	17.3	$\boldsymbol{\varepsilon}$	308
	17.4	Choice of Pulse Waveform	309
	17.5	The Matched Filter	311
	17.6	Pulse Compression by Matched Filtering	313
	17.7	Cross-Range Resolution	316
	17.8	A Simplified Theory of SAR Imaging	317
	17.9	Image Reconstruction with Fresnel Approximation	320
	17.10	Algorithms for Digital Image Reconstruction	322
		17.10.1 Spatial Frequency Interpolation	322
18.	Comp	puterized Imaging II: Image	
		nstruction from Projections	326
		-	
	18.1	Introduction	326
	18.2	The Radon Transform	326
	18.3	The Projection Slice Theorem	328
	18.4	The Inverse Radon Transform	330
	18.5	Properties of the Radon Transform	331
	18.6	Reconstruction of a Signal From its	
	40.5	Projections	332
	18.7	The Fourier Reconstruction Method	333
	18.8	The Filtered-Backprojection Algorithm	335

CONTENTS xi

19.	Dense	e Wavelength Division Multiplexing	338
	19.1	Introduction	338
	19.2	Array Waveguide Grating	339
	19.3	Method of Irregularly Sampled Zero-Crossings (MISZC)	341
		19.3.1 Computational Method for Calculating the	
		Correction Terms	345
		19.3.2 Extension of MISZC to 3-D Geometry	346
	19.4	Analysis of MISZC	347
		19.4.1 Dispersion Analysis	349
		19.4.2 Finite-Sized Apertures	350
	19.5	Computer Experiments	351
		19.5.1 Point-Source Apertures	351
		19.5.2 Large Number of Channels	353
		19.5.3 Finite-Sized Apertures	355
		19.5.4 The Method of Creating the Negative Phase	355
		19.5.5 Error Tolerances	356
		19.5.6 3-D Simulations	356
		19.5.7 Phase Quantization	358
	19.6	Implementational Issues	359
20.	Num	erical Methods for Rigorous	
	Diffr	action Theory	361
	20.1	Introduction	361
	20.2		362
	20.3	Wide Angle BPM	364
	20.4	Finite Differences	367
	20.5	Finite Difference Time Domain Method	368
	_ 0.0	20.5.1 Yee's Algorithm	368
	20.6	Computer Experiments	371
	20.7	<u>. </u>	374
Apr	endix	A: The Impulse Function	377
		B: Linear Vector Spaces	382
		C: The Discrete-Time Fourier Transform,	
• •		The Discrete Fourier Transform and	
		The Fast Fourier Transform	391
Ref	erence	S	397
Ind	Index		