

Annual Plant Reviews, Volume 32

^{Edited by} Dirk Inzé

Contents

Coı	ntribu	tors		xiii	
Pre	face			xvii	
1	mul DÉN	t <mark>iple func</mark> IES DUD	family of plant cyclin-dependent kinases with ctions in cellular and developmental regulation DITS, MÁTYÁS CSERHÁTI, PÁL MISKOLCZI R V. HORVÁTH	1	
	1.1	Introdu		1	
	1.2		ural diversity in the family of plant CDKs	2	
	1.3	Expres	sion profiles of CDK genes: structures and functions	2	
		of pron		14	
	1.4	Diverse	e functions of CDK protein complexes in multiple	1.	
			ory mechanisms	20	
	1.5	Develo	opmental consequences of altered CDK functions	24	
	1.6	Perspec	ctives	25	
		nowledgn	nents	25	
	Refe	rences	!	26	
2	The plant cyclins				
			UWLAND, MARGIT MENGES AND		
	2.1	ES A.H. Introdu	MURRAY		
	2.1			31	
	2.2		Cyclins and the cell cycle oscillator ant cyclin family	31	
	2.2		Phylogenetic relationships between animal	32	
			and plant cyclins	33	
			Cyclin domains	33 34	
			A-type cyclins	34 34	
			B-type cyclins	40	
			D-type cyclins	41	
			Other cyclins	42	
	2.3		sion of cyclins during the cell cycle	47	
			The G1 checkpoint	47	
			S phase	48	
			G2-M	49	
	2.4		s in plant development	49	
	2.5	Conclu	ding remarks	53	

vi CONTENTS

		owieagi ences	ments	54 54		
3	CDK	inhibit	ors	62		
	HON	G WAN	IG, YONGMING ZHOU, JUAN ANTONIO			
	TOR	RES AC	COSTA AND LARRY C. FOWKE			
	3.1	Introd	uction	62		
	3.2	Plant (CDK inhibitors and sequence uniqueness	64		
	3.3	Expres	ssion	66		
	3.4		ctions with cell cycle proteins and CDK inhibition	68		
	3.5	Protein	n stability and modifications	71		
	3.6		ar localization	72		
	3.7		inhibitors and plant growth and development	74		
	3.8	_	ycle phase transitions	77		
	3.9		ycle exit and endoreduplication	78		
	3.10		uding remarks	80		
			at proofing stage	82		
		owledgi	ments	82		
	Refer	ences		82		
4	The UPS: an engine that drives the cell cycle					
	PASCAL GENSCHIK AND MARIE CLAIRE CRIQUI					
	4.1	The m	olecular machinery mediating ubiquitin-dependent			
		proteo	olysis	87		
		4.1.1	Ubiquitylation reaction	87		
		4.1.2	Ubiquitin protein ligases	89		
	4.2	The S	CF and APC/C: the two master E3s regulating			
		the ce	ll cycle	89		
		4.2.1	The SCF: an E3 regulating the G1/S transition	90		
		4.2.2	The APC/C: the E3 coordinating cell cycle			
			progression through mitosis and G1	90		
	4.3	Cell c	ycle targets of the proteolytic machinery	92		
		4.3.1	•	92		
			Regulators that control DNA replication licensing	95		
		4.3.3	Metaphase to anaphase transition	98		
		4.3.4	Mitotic cyclin destruction: the essential step to exit			
			mitosis	99		
		4.3.5	APC ^{CDC20} versus APC ^{CDH1/CCS52}	101		
			Regulation of endoreduplication by the APC/C	103		
	4.4	Concl	usion	104		
	Refe	rences		104		
5	CDK	phospl	horylation	114		
	AKIE SHIMOTOHNO AND MASAAKI UMEDA					
	5.1		uction	114		
	5.2		riew of CAKs in yeasts and vertebrates	116		

CONTENTS	vii
CONTENTS	vi

	5.3	Verteb	orate-type CAK in plants	117		
	5.0	5.3.1	CDKD, cyclin H and MAT1	117		
		5.3.2	CDKD protein complexes	119		
		5.3.3	CDKD in cell cycle regulation and transcriptional			
			control	120		
	5.4	Plant-s	specific CAK	121		
		5.4.1	Unique features of CDKF	121		
		5.4.2	CAK-activating kinase activity of CDKF	122		
	5.5	Manip	oulation of in vivo CDK activities by CAK	124		
	5.6		tory phosphorylation of yeast and vertebrate CDKs	125		
	5.7	Inhibit	tory phosphorylation of plant CDKs	126		
		5.7.1	Plant WEE1 kinases	126		
		5.7.2	Requirement for tyrosine dephosphorylation in plant			
			cell division	127		
		5.7.3	A CDC25-like phosphatase and an antiphosphatase in			
			Arabidopsis	129		
	5.8	Concl	usion and perspectives	130		
	Ackn	owledg	ments	131		
	Refer	ences		131		
			:			
6	E2F-DP transcription factors					
			MIREZ-PARRA, JUAN CARLOS DEL POZO,			
			E DESVOYES, MARÍA DE LA PAZ SANCHEZ			
	AND		ANTO GUTIERREZ			
	6.1		DP transcription factors: a historical perspective	138		
	6.2		in organization of E2F–DP proteins	139		
		6.2.1	DNA-binding and dimerization domains	139		
		6.2.2	RBR-binding domain	141		
	6.3		criptional and post-translational regulation of E2F	141		
		6.3.1	•	141		
			Phosphorylation	143		
		6.3.3		143		
			Selective proteolysis of E2F and DP	143		
	6.4		DP target genes	144		
		6.4.1	DNA replication genes	148		
		6.4.2	Cell cycle genes	151		
		6.4.3	E2F targets in differentiated cells	152		
		6.4.4	Genome-wide approaches to identify E2F target			
			genes	153		
	6.5		ional relevance of E2F–DP in development	154		
	6.6	E2F and epigenetic regulation of gene expression		155		
	6.7 Concluding remarks: complexity of E2F-dependent					
		regula	ation of gene expression	157		
		owledg	ments	158		
	Refe	rences		158		

viii CONTENTS

		104
7.1	Introduction	164
7.2	Retinoblastoma proteins and the tumor suppressor concept	164
7.3	The retinoblastoma pathway is conserved in animals and	
	plants	165
7.4	-	
		166
7.5		
		168
7.6		
, , ,		169
77		
,.,		169
7 8	-	107
7.0	*	171
7.9		1,1
1.7		172
7.10	-	1,2
7.10		174
7 11		1,,
7.11	-	175
7 12	•	175
7.12		176
7 12		178
		179
		179
Kelei	circes	1/2
Auxi	n fuels the cell cycle engine during lateral root initiation	187
STEI	FEN VANNESTE, DIRK INZÉ AND TOM BEECKMAN	
8.1	Introduction	187
8.2	Cell cycle regulation during lateral root development	188
8.3	Stemness of the xylem pole associated pericycle	189
8.4	Auxin signalling during lateral root initiation	190
		193
		194
		195
	•	196
		197
	•	197
		198
Cell	cycle control during leaf development	203
		203
9.2	The cell cycle and cell division during leaf initiation	204
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 Ackin Refer Auxi 8.5 8.6 8.7 8.8 8.9 8.10 Refer Cell 4 AND 9.1	 7.2 Retinoblastoma proteins and the tumor suppressor concept 7.3 The retinoblastoma pathway is conserved in animals and plants 7.4 Retinoblastoma proteins form complexes with E2F transcription factors to control entry into the cell cycle 7.5 G1 restriction point control is mediated by retinoblastoma protein phosphorylation 7.6 Animal and plant DNA viruses target retinoblastoma proteins to induce host DNA replication 7.7 Information on retinoblastoma protein function in animal development is still incomplete 7.8 Retinoblastoma proteins may have conserved functions in germline development 7.9 Retinoblastoma proteins connect stem cell maintenance to cell proliferation and differentiation 7.10 Perturbation of RBR during leaf development affects cell proliferation and control of DNA replication 7.11 Roles of retinoblastoma proteins in transcription activation and repression 7.12 Retinoblastoma proteins interact with polycomb group complexes in controlling gene expression 7.13 Conclusion Acknowledgments References Auxin fuels the cell cycle engine during lateral root initiation STEFFEN VANNESTE, DIRK INZÉ AND TOM BEECKMAN 8.1 Introduction 8.2 Cell cycle regulation during lateral root development 8.3 Stemness of the xylem pole associated pericycle 8.4 Auxin signalling during lateral root initiation 8.5 Post-transcriptional feedback mechanisms on auxin signalling 8.6 Polar auxin transport defines lateral root boundaries 8.7 Cytokinins inhibit lateral root development 8.8 Brassinosteroids regulate auxin transport 8.9 Light alters auxin sensitivity 8.10 Conclusions and perspectives References Cell cycle control during leaf development ANDREW J. FLEMING 9.1 Introduction

CONTENTS ix

		9.2.1	Patterns of the cell cycle and cell division during leaf initiation	204	
		9.2.2	Manipulation of the cell cycle and cell division during	204	
			leaf initiation	208	
		9.2.3	The role of the cell cycle and cell division during		
			leaf initiation	211	
	9.3	The co	ell cycle and cell division during leaf growth	212	
		9.3.1	Patterns of the cell cycle and cell division during		
			leaf growth	212	
		9.3.2	Manipulation of the cell cycle and cell division during		
			leaf growth	214	
		9.3.3	The role of the cell cycle and cell division during		
			leaf growth	218	
	9.4		ell cycle and cell division during leaf differentiation	218	
		9.4.1	Patterns of the cell cycle and cell division during		
			leaf differentiation	218	
		9.4.2	Manipulation of the cell cycle and cell division during		
			leaf differentiation	219	
		9.4.3	The role of the cell cycle and cell division during		
			leaf differentiation	220	
	9.5		usions	221	
		owledg	ments	222	
	Refer	ences		222	
10	DI				
10			al relevance and molecular control of the endocycle	225	
	in pla		GHE, DIRK INZÉ AND LIEVEN DE VEYLDER	227	
			·	227	
	10.1		luction	227	
	10.2		Tence and physiological role of endoreduplication	225	
		in nati		227	
			Endoreduplication in nonplant species	229	
	10.2		2 Endoreduplication in plants	229	
	10.3		cular control of the endocycle	233	
	10.4		onmental and hormonal control of the endocycle	240	
	10.5	Outlo		241	
		owledg	ments	242	
	Keier	ences		242	
11	Insig	hts into	the endocycle from trichome development	249	
	JOHN C. LARKIN, MATTHEW L. BROWN				
			ELLE L. CHURCHMAN		
	11.1		luction	249	
	11.2		egulation and cell cycle context of trichome	477	
			opment	251	
	11.3		ation of endoreduplication during trichome	231	
		-	opment	253	
		GO FOIL	Sharrante	200	

X CONTENTS

		11.3.1 Control of trichome endoreduplication by	
		developmental regulators	253
		11.3.2 Regulators of the G1/S transition and S-phase	
		progression affect endoreduplication levels in	
		trichomes	256
		11.3.3 Inhibitors of trichome endoreduplication levels	257
		11.3.4 Genes affecting division potential of developing	
		trichomes	259
	11.4	Conclusions and outlook	261
		11.4.1 Basic mechanism of endoreduplication in trichomes	
		resembles that of other cell types	261
		11.4.2 The role of D-cyclins in trichome endoreduplication	262
		11.4.3 A speculative model of endoreduplication during	
		trichome development	263
		11.4.4 Open questions and future prospects	265
	Ackn	owledgments	265
	Refer	rences	265
12	Cell	cycle control and fruit development	269
	CHR	ISTIAN CHEVALIER	
	12.1	Introduction	269
	12.2	Fruit development: a matter of cell number and cell size	270
		12.2.1 Brief description of tomato fruit development	270
		12.2.2 Hormonal signalling in fruit set and development	272
	12.3	Cell cycle gene expression and fruit development	274
		12.3.1 Core cell cycle genes in tomato	274
		12.3.2 Expression of cell cycle genes during fruit	
		development	277
		12.3.3 Temporal expression of cell cycle genes in the	
		different fruit tissues	278
	12.4	Altering the cell cycle towards endoreduplication: a key	
		feature for fruit growth	280
		12.4.1 Role of WEE1 in endoreduplication during tomato	
		fruit development	281
		12.4.2 Role of ICK/KRP in endoreduplication during tomato	
		fruit development	283
	12.5	Genetic control of fruit size	285
	12.6	Metabolic control of fruit development and growth	286
	12.7	Conclusion	288
		owledgments	290
	Refer	rences	290
13		cycle and endosperm development	294
	PAOI	LO A. SABELLI, HONG NGUYEN AND BRIAN A. LARKINS	
	13.1	Introduction	294
	13.2	Endosperm development: a cell cycle perspective	204

CONTENTS	

	13.3	Genetic control of endosperm cell proliferation	298
	13.4	The cell cycle molecular engine during endosperm	
		development	301
	13.5	Role of CDKA in the endoreduplication cell cycle	302
	13.6	Environmental and hormonal control of the cell cycle	303
	13.7	Epigenetic control	305
	13.8	Perspectives	306
		owledgments	307
	Refere		307
	Refer		
14	Horm	onal regulation of cell cycle progression and its	
		ı development	311
		R C.L. JOHN	
	14.1	Introduction	311
	14.2	Auxin and cytokinin have paramount roles in cell	
		proliferation control	312
	14.3	Growth and cell cycle gene expression induced by auxin and	
	ž ·	cytokinin	312
	14.4	Does cell cycle progression affect growth?	314
	14.5	Division sustains continuation of growth	315
	14.6	Localized growth	316
	14.7	Hormonal impacts at the G1/S phase progression	316
	14.8	Hormonal impacts at the G2/M phase progression	318
	14.9	Roots and shoots provide each other with hormones	510
	1 1.2	essential for division	322
	14.10	Cytokinin contributions to stem cell and meristem identity	344
	14.10	at the shoot apex	322
	14.11	Auxin contributions to stem cell and meristem activity at the	322
	17.11	root apex	323
	14.12	Hormones and the balance of cell proliferation between root	323
	17.12	and shoot	324
	14.13	Auxin/cytokinin ratio and initiation of cell proliferation in	324
	14.13	lateral meristems	325
	14.14		323
	14.14	Possible mechanisms for cell cycle response to hormone concentration and ratio	206
	14.15	Cell cycle control in the spacing of lateral organs	326
	Refere		328
	Keiete	onces	329
15	Cell c	ycle and environmental stresses	335
		STINE GRANIER, SARAH JANE COOKSON,	555
	15.1	ICOIS TARDIEU AND BERTRAND MULLER Introduction	335
	15.2	Environmental stresses affect spatial and temporal patterns	500
		of cell division rate in plant organs	336

xii CONTENTS

	15.2.1 Spatial and temporal patterns of cell division rate in	
	plant organs are a useful framework for analyzing	
	the effects of environmental stresses on cell division	336
	15.2.2 Effects of water deficit	338
	15.2.3 Salt stress, low nitrogen and low phosphorus	
	produce similar effects to those due to water deficit	339
	15.2.4 Effects of light and CO ₂	339
	15.2.5 Effects of temperature	339
15.3	Coupling and uncoupling of cell division and tissue	
	expansion in response to environmental conditions	340
	15.3.1 Under several circumstances, cell division and tissue	
	expansion are coupled	340
	15.3.2 Uncoupling of cell division and tissue expansion is	
	revealed by the analysis of cell size in response to	
	environmental stresses	343
	15.3.3 Cessation of cell division could be a cause of	
	cessation of elongation in roots in response to	
	environmental stimuli	344
15.4	Environmental stresses cause a blockage at the G1–S and	
	G2–M transitions	344
	15.4.1 The plant cell cycle can be regulated at multiple	
	points but it appears that major controls operate at	
	the G1–S and G2–M transitions in response to	
	environmental stresses	345
	15.4.2 Evidence that non-stressing temperatures lengthen	
	cell cycle without necessarily blocking it at specific	
	checkpoints	346
	15.4.3 Environmental stresses affect the CDK activity	346
	15.4.4 Controls of the G1–S and G2–M transitions in	
	response to environmental stresses depend on the	
	activation state of the CDK	347
15.5	Endoreduplication and abiotic stresses	347
	15.5.1 Effects of water deficit	348
	15.5.2 Effects of light and elevated CO ₂	348
	15.5.3 Effects of temperature	349
	15.5.4 The role of endoreduplication in adaptation to	
	abiotic stresses	349
15.6	Conclusion	350
Refere	ences	351
Index		356
The colour plate section appears after page		