Annual Plant Reviews, Volume 32 ^{Edited by} Dirk Inzé ## **Contents** | Coı | ntribu | tors | | xiii | | |-----|-------------------|-------------------------------------|---|----------|--| | Pre | face | | | xvii | | | 1 | mul
DÉN | t <mark>iple func</mark>
IES DUD | family of plant cyclin-dependent kinases with ctions in cellular and developmental regulation DITS, MÁTYÁS CSERHÁTI, PÁL MISKOLCZI R V. HORVÁTH | 1 | | | | 1.1 | Introdu | | 1 | | | | 1.2 | | ural diversity in the family of plant CDKs | 2 | | | | 1.3 | Expres | sion profiles of CDK genes: structures and functions | 2 | | | | | of pron | | 14 | | | | 1.4 | Diverse | e functions of CDK protein complexes in multiple | 1. | | | | | | ory mechanisms | 20 | | | | 1.5 | Develo | opmental consequences of altered CDK functions | 24 | | | | 1.6 | Perspec | ctives | 25 | | | | | nowledgn | nents | 25 | | | | Refe | rences | ! | 26 | | | 2 | The plant cyclins | | | | | | | | | UWLAND, MARGIT MENGES AND | | | | | 2.1 | ES A.H.
Introdu | MURRAY | | | | | 2.1 | | | 31 | | | | 2.2 | | Cyclins and the cell cycle oscillator ant cyclin family | 31 | | | | 2.2 | | Phylogenetic relationships between animal | 32 | | | | | | and plant cyclins | 33 | | | | | | Cyclin domains | 33
34 | | | | | | A-type cyclins | 34
34 | | | | | | B-type cyclins | 40 | | | | | | D-type cyclins | 41 | | | | | | Other cyclins | 42 | | | | 2.3 | | sion of cyclins during the cell cycle | 47 | | | | | | The G1 checkpoint | 47 | | | | | | S phase | 48 | | | | | | G2-M | 49 | | | | 2.4 | | s in plant development | 49 | | | | 2.5 | Conclu | ding remarks | 53 | | vi CONTENTS | | | owieagi
ences | ments | 54
54 | | | |---|---|------------------|--|----------|--|--| | 3 | CDK | inhibit | ors | 62 | | | | | HON | G WAN | IG, YONGMING ZHOU, JUAN ANTONIO | | | | | | TOR | RES AC | COSTA AND LARRY C. FOWKE | | | | | | 3.1 | Introd | uction | 62 | | | | | 3.2 | Plant (| CDK inhibitors and sequence uniqueness | 64 | | | | | 3.3 | Expres | ssion | 66 | | | | | 3.4 | | ctions with cell cycle proteins and CDK inhibition | 68 | | | | | 3.5 | Protein | n stability and modifications | 71 | | | | | 3.6 | | ar localization | 72 | | | | | 3.7 | | inhibitors and plant growth and development | 74 | | | | | 3.8 | _ | ycle phase transitions | 77 | | | | | 3.9 | | ycle exit and endoreduplication | 78 | | | | | 3.10 | | uding remarks | 80 | | | | | | | at proofing stage | 82 | | | | | | owledgi | ments | 82 | | | | | Refer | ences | | 82 | | | | 4 | The UPS: an engine that drives the cell cycle | | | | | | | | PASCAL GENSCHIK AND MARIE CLAIRE CRIQUI | | | | | | | | 4.1 | The m | olecular machinery mediating ubiquitin-dependent | | | | | | | proteo | olysis | 87 | | | | | | 4.1.1 | Ubiquitylation reaction | 87 | | | | | | 4.1.2 | Ubiquitin protein ligases | 89 | | | | | 4.2 | The S | CF and APC/C: the two master E3s regulating | | | | | | | the ce | ll cycle | 89 | | | | | | 4.2.1 | The SCF: an E3 regulating the G1/S transition | 90 | | | | | | 4.2.2 | The APC/C: the E3 coordinating cell cycle | | | | | | | | progression through mitosis and G1 | 90 | | | | | 4.3 | Cell c | ycle targets of the proteolytic machinery | 92 | | | | | | 4.3.1 | • | 92 | | | | | | | Regulators that control DNA replication licensing | 95 | | | | | | 4.3.3 | Metaphase to anaphase transition | 98 | | | | | | 4.3.4 | Mitotic cyclin destruction: the essential step to exit | | | | | | | | mitosis | 99 | | | | | | 4.3.5 | APC ^{CDC20} versus APC ^{CDH1/CCS52} | 101 | | | | | | | Regulation of endoreduplication by the APC/C | 103 | | | | | 4.4 | Concl | usion | 104 | | | | | Refe | rences | | 104 | | | | 5 | CDK | phospl | horylation | 114 | | | | | AKIE SHIMOTOHNO AND MASAAKI UMEDA | | | | | | | | 5.1 | | uction | 114 | | | | | 5.2 | | riew of CAKs in yeasts and vertebrates | 116 | | | | CONTENTS | vii | |----------|-----| | CONTENTS | vi | | | 5.3 | Verteb | orate-type CAK in plants | 117 | | | |---|---|--|---|-----|--|--| | | 5.0 | 5.3.1 | CDKD, cyclin H and MAT1 | 117 | | | | | | 5.3.2 | CDKD protein complexes | 119 | | | | | | 5.3.3 | CDKD in cell cycle regulation and transcriptional | | | | | | | | control | 120 | | | | | 5.4 | Plant-s | specific CAK | 121 | | | | | | 5.4.1 | Unique features of CDKF | 121 | | | | | | 5.4.2 | CAK-activating kinase activity of CDKF | 122 | | | | | 5.5 | Manip | oulation of in vivo CDK activities by CAK | 124 | | | | | 5.6 | | tory phosphorylation of yeast and vertebrate CDKs | 125 | | | | | 5.7 | Inhibit | tory phosphorylation of plant CDKs | 126 | | | | | | 5.7.1 | Plant WEE1 kinases | 126 | | | | | | 5.7.2 | Requirement for tyrosine dephosphorylation in plant | | | | | | | | cell division | 127 | | | | | | 5.7.3 | A CDC25-like phosphatase and an antiphosphatase in | | | | | | | | Arabidopsis | 129 | | | | | 5.8 | Concl | usion and perspectives | 130 | | | | | Ackn | owledg | ments | 131 | | | | | Refer | ences | | 131 | | | | | | | : | | | | | | | | | | | | | 6 | E2F-DP transcription factors | | | | | | | | | | MIREZ-PARRA, JUAN CARLOS DEL POZO, | | | | | | | | E DESVOYES, MARÍA DE LA PAZ SANCHEZ | | | | | | AND | | ANTO GUTIERREZ | | | | | | 6.1 | | DP transcription factors: a historical perspective | 138 | | | | | 6.2 | | in organization of E2F–DP proteins | 139 | | | | | | 6.2.1 | DNA-binding and dimerization domains | 139 | | | | | | 6.2.2 | RBR-binding domain | 141 | | | | | 6.3 | | criptional and post-translational regulation of E2F | 141 | | | | | | 6.3.1 | • | 141 | | | | | | | Phosphorylation | 143 | | | | | | 6.3.3 | | 143 | | | | | | | Selective proteolysis of E2F and DP | 143 | | | | | 6.4 | | DP target genes | 144 | | | | | | 6.4.1 | DNA replication genes | 148 | | | | | | 6.4.2 | Cell cycle genes | 151 | | | | | | 6.4.3 | E2F targets in differentiated cells | 152 | | | | | | 6.4.4 | Genome-wide approaches to identify E2F target | | | | | | | | genes | 153 | | | | | 6.5 | | ional relevance of E2F–DP in development | 154 | | | | | 6.6 | E2F and epigenetic regulation of gene expression | | 155 | | | | | 6.7 Concluding remarks: complexity of E2F-dependent | | | | | | | | | regula | ation of gene expression | 157 | | | | | | owledg | ments | 158 | | | | | Refe | rences | | 158 | | | viii CONTENTS | | | 104 | |-------|--|--| | | | | | 7.1 | Introduction | 164 | | 7.2 | Retinoblastoma proteins and the tumor suppressor concept | 164 | | 7.3 | The retinoblastoma pathway is conserved in animals and | | | | plants | 165 | | 7.4 | - | | | | | 166 | | 7.5 | | | | | | 168 | | 7.6 | | | | , , , | | 169 | | 77 | | | | ,., | | 169 | | 7 8 | - | 107 | | 7.0 | * | 171 | | 7.9 | | 1,1 | | 1.7 | | 172 | | 7.10 | - | 1,2 | | 7.10 | | 174 | | 7 11 | | 1,, | | 7.11 | - | 175 | | 7 12 | • | 175 | | 7.12 | | 176 | | 7 12 | | 178 | | | | 179 | | | | 179 | | Kelei | circes | 1/2 | | Auxi | n fuels the cell cycle engine during lateral root initiation | 187 | | STEI | FEN VANNESTE, DIRK INZÉ AND TOM BEECKMAN | | | 8.1 | Introduction | 187 | | 8.2 | Cell cycle regulation during lateral root development | 188 | | 8.3 | Stemness of the xylem pole associated pericycle | 189 | | 8.4 | Auxin signalling during lateral root initiation | 190 | | | | 193 | | | | 194 | | | | 195 | | | • | 196 | | | | 197 | | | • | 197 | | | | 198 | | Cell | cycle control during leaf development | 203 | | | | | | | | 203 | | 9.2 | The cell cycle and cell division during leaf initiation | 204 | | | 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 Ackin Refer Auxi 8.5 8.6 8.7 8.8 8.9 8.10 Refer Cell 4 AND 9.1 | 7.2 Retinoblastoma proteins and the tumor suppressor concept 7.3 The retinoblastoma pathway is conserved in animals and plants 7.4 Retinoblastoma proteins form complexes with E2F transcription factors to control entry into the cell cycle 7.5 G1 restriction point control is mediated by retinoblastoma protein phosphorylation 7.6 Animal and plant DNA viruses target retinoblastoma proteins to induce host DNA replication 7.7 Information on retinoblastoma protein function in animal development is still incomplete 7.8 Retinoblastoma proteins may have conserved functions in germline development 7.9 Retinoblastoma proteins connect stem cell maintenance to cell proliferation and differentiation 7.10 Perturbation of RBR during leaf development affects cell proliferation and control of DNA replication 7.11 Roles of retinoblastoma proteins in transcription activation and repression 7.12 Retinoblastoma proteins interact with polycomb group complexes in controlling gene expression 7.13 Conclusion Acknowledgments References Auxin fuels the cell cycle engine during lateral root initiation STEFFEN VANNESTE, DIRK INZÉ AND TOM BEECKMAN 8.1 Introduction 8.2 Cell cycle regulation during lateral root development 8.3 Stemness of the xylem pole associated pericycle 8.4 Auxin signalling during lateral root initiation 8.5 Post-transcriptional feedback mechanisms on auxin signalling 8.6 Polar auxin transport defines lateral root boundaries 8.7 Cytokinins inhibit lateral root development 8.8 Brassinosteroids regulate auxin transport 8.9 Light alters auxin sensitivity 8.10 Conclusions and perspectives References Cell cycle control during leaf development ANDREW J. FLEMING 9.1 Introduction | CONTENTS ix | | | 9.2.1 | Patterns of the cell cycle and cell division during leaf initiation | 204 | | |----|----------------------------------|----------|---|-----|--| | | | 9.2.2 | Manipulation of the cell cycle and cell division during | 204 | | | | | | leaf initiation | 208 | | | | | 9.2.3 | The role of the cell cycle and cell division during | | | | | | | leaf initiation | 211 | | | | 9.3 | The co | ell cycle and cell division during leaf growth | 212 | | | | | 9.3.1 | Patterns of the cell cycle and cell division during | | | | | | | leaf growth | 212 | | | | | 9.3.2 | Manipulation of the cell cycle and cell division during | | | | | | | leaf growth | 214 | | | | | 9.3.3 | The role of the cell cycle and cell division during | | | | | | | leaf growth | 218 | | | | 9.4 | | ell cycle and cell division during leaf differentiation | 218 | | | | | 9.4.1 | Patterns of the cell cycle and cell division during | | | | | | | leaf differentiation | 218 | | | | | 9.4.2 | Manipulation of the cell cycle and cell division during | | | | | | | leaf differentiation | 219 | | | | | 9.4.3 | The role of the cell cycle and cell division during | | | | | | | leaf differentiation | 220 | | | | 9.5 | | usions | 221 | | | | | owledg | ments | 222 | | | | Refer | ences | | 222 | | | 10 | DI | | | | | | 10 | | | al relevance and molecular control of the endocycle | 225 | | | | in pla | | GHE, DIRK INZÉ AND LIEVEN DE VEYLDER | 227 | | | | | | · | 227 | | | | 10.1 | | luction | 227 | | | | 10.2 | | Tence and physiological role of endoreduplication | 225 | | | | | in nati | | 227 | | | | | | Endoreduplication in nonplant species | 229 | | | | 10.2 | | 2 Endoreduplication in plants | 229 | | | | 10.3 | | cular control of the endocycle | 233 | | | | 10.4 | | onmental and hormonal control of the endocycle | 240 | | | | 10.5 | Outlo | | 241 | | | | | owledg | ments | 242 | | | | Keier | ences | | 242 | | | 11 | Insig | hts into | the endocycle from trichome development | 249 | | | | JOHN C. LARKIN, MATTHEW L. BROWN | | | | | | | | | ELLE L. CHURCHMAN | | | | | 11.1 | | luction | 249 | | | | 11.2 | | egulation and cell cycle context of trichome | 477 | | | | | | opment | 251 | | | | 11.3 | | ation of endoreduplication during trichome | 231 | | | | | - | opment | 253 | | | | | GO FOIL | Sharrante | 200 | | X CONTENTS | | | 11.3.1 Control of trichome endoreduplication by | | |----|-------|--|-----| | | | developmental regulators | 253 | | | | 11.3.2 Regulators of the G1/S transition and S-phase | | | | | progression affect endoreduplication levels in | | | | | trichomes | 256 | | | | 11.3.3 Inhibitors of trichome endoreduplication levels | 257 | | | | 11.3.4 Genes affecting division potential of developing | | | | | trichomes | 259 | | | 11.4 | Conclusions and outlook | 261 | | | | 11.4.1 Basic mechanism of endoreduplication in trichomes | | | | | resembles that of other cell types | 261 | | | | 11.4.2 The role of D-cyclins in trichome endoreduplication | 262 | | | | 11.4.3 A speculative model of endoreduplication during | | | | | trichome development | 263 | | | | 11.4.4 Open questions and future prospects | 265 | | | Ackn | owledgments | 265 | | | Refer | rences | 265 | | 12 | Cell | cycle control and fruit development | 269 | | | CHR | ISTIAN CHEVALIER | | | | 12.1 | Introduction | 269 | | | 12.2 | Fruit development: a matter of cell number and cell size | 270 | | | | 12.2.1 Brief description of tomato fruit development | 270 | | | | 12.2.2 Hormonal signalling in fruit set and development | 272 | | | 12.3 | Cell cycle gene expression and fruit development | 274 | | | | 12.3.1 Core cell cycle genes in tomato | 274 | | | | 12.3.2 Expression of cell cycle genes during fruit | | | | | development | 277 | | | | 12.3.3 Temporal expression of cell cycle genes in the | | | | | different fruit tissues | 278 | | | 12.4 | Altering the cell cycle towards endoreduplication: a key | | | | | feature for fruit growth | 280 | | | | 12.4.1 Role of WEE1 in endoreduplication during tomato | | | | | fruit development | 281 | | | | 12.4.2 Role of ICK/KRP in endoreduplication during tomato | | | | | fruit development | 283 | | | 12.5 | Genetic control of fruit size | 285 | | | 12.6 | Metabolic control of fruit development and growth | 286 | | | 12.7 | Conclusion | 288 | | | | owledgments | 290 | | | Refer | rences | 290 | | 13 | | cycle and endosperm development | 294 | | | PAOI | LO A. SABELLI, HONG NGUYEN AND BRIAN A. LARKINS | | | | 13.1 | Introduction | 294 | | | 13.2 | Endosperm development: a cell cycle perspective | 204 | | CONTENTS | | |----------|--| | | | | | | | | 13.3 | Genetic control of endosperm cell proliferation | 298 | |----|--------|--|-----| | | 13.4 | The cell cycle molecular engine during endosperm | | | | | development | 301 | | | 13.5 | Role of CDKA in the endoreduplication cell cycle | 302 | | | 13.6 | Environmental and hormonal control of the cell cycle | 303 | | | 13.7 | Epigenetic control | 305 | | | 13.8 | Perspectives | 306 | | | | owledgments | 307 | | | Refere | | 307 | | | Refer | | | | 14 | Horm | onal regulation of cell cycle progression and its | | | | | ı development | 311 | | | | R C.L. JOHN | | | | 14.1 | Introduction | 311 | | | 14.2 | Auxin and cytokinin have paramount roles in cell | | | | | proliferation control | 312 | | | 14.3 | Growth and cell cycle gene expression induced by auxin and | | | | ž · | cytokinin | 312 | | | 14.4 | Does cell cycle progression affect growth? | 314 | | | 14.5 | Division sustains continuation of growth | 315 | | | 14.6 | Localized growth | 316 | | | 14.7 | Hormonal impacts at the G1/S phase progression | 316 | | | 14.8 | Hormonal impacts at the G2/M phase progression | 318 | | | 14.9 | Roots and shoots provide each other with hormones | 510 | | | 1 1.2 | essential for division | 322 | | | 14.10 | Cytokinin contributions to stem cell and meristem identity | 344 | | | 14.10 | at the shoot apex | 322 | | | 14.11 | Auxin contributions to stem cell and meristem activity at the | 322 | | | 17.11 | root apex | 323 | | | 14.12 | Hormones and the balance of cell proliferation between root | 323 | | | 17.12 | and shoot | 324 | | | 14.13 | Auxin/cytokinin ratio and initiation of cell proliferation in | 324 | | | 14.13 | lateral meristems | 325 | | | 14.14 | | 323 | | | 14.14 | Possible mechanisms for cell cycle response to hormone concentration and ratio | 206 | | | 14.15 | Cell cycle control in the spacing of lateral organs | 326 | | | Refere | | 328 | | | Keiete | onces | 329 | | 15 | Cell c | ycle and environmental stresses | 335 | | | | STINE GRANIER, SARAH JANE COOKSON, | 555 | | | | | | | | 15.1 | ICOIS TARDIEU AND BERTRAND MULLER Introduction | 335 | | | 15.2 | Environmental stresses affect spatial and temporal patterns | 500 | | | | of cell division rate in plant organs | 336 | xii CONTENTS | | 15.2.1 Spatial and temporal patterns of cell division rate in | | |---|---|-----| | | plant organs are a useful framework for analyzing | | | | the effects of environmental stresses on cell division | 336 | | | 15.2.2 Effects of water deficit | 338 | | | 15.2.3 Salt stress, low nitrogen and low phosphorus | | | | produce similar effects to those due to water deficit | 339 | | | 15.2.4 Effects of light and CO ₂ | 339 | | | 15.2.5 Effects of temperature | 339 | | 15.3 | Coupling and uncoupling of cell division and tissue | | | | expansion in response to environmental conditions | 340 | | | 15.3.1 Under several circumstances, cell division and tissue | | | | expansion are coupled | 340 | | | 15.3.2 Uncoupling of cell division and tissue expansion is | | | | revealed by the analysis of cell size in response to | | | | environmental stresses | 343 | | | 15.3.3 Cessation of cell division could be a cause of | | | | cessation of elongation in roots in response to | | | | environmental stimuli | 344 | | 15.4 | Environmental stresses cause a blockage at the G1–S and | | | | G2–M transitions | 344 | | | 15.4.1 The plant cell cycle can be regulated at multiple | | | | points but it appears that major controls operate at | | | | the G1–S and G2–M transitions in response to | | | | environmental stresses | 345 | | | 15.4.2 Evidence that non-stressing temperatures lengthen | | | | cell cycle without necessarily blocking it at specific | | | | checkpoints | 346 | | | 15.4.3 Environmental stresses affect the CDK activity | 346 | | | 15.4.4 Controls of the G1–S and G2–M transitions in | | | | response to environmental stresses depend on the | | | | activation state of the CDK | 347 | | 15.5 | Endoreduplication and abiotic stresses | 347 | | | 15.5.1 Effects of water deficit | 348 | | | 15.5.2 Effects of light and elevated CO ₂ | 348 | | | 15.5.3 Effects of temperature | 349 | | | 15.5.4 The role of endoreduplication in adaptation to | | | | abiotic stresses | 349 | | 15.6 | Conclusion | 350 | | Refere | ences | 351 | | Index | | 356 | | The colour plate section appears after page | | |