SECOND EDITION

SURFACE ACOUSTIC WAVE FILTERS

WITH APPLICATIONS TO ELECTRONIC COMMUNICATIONS AND SIGNAL PROCESSING

DAVID MORGAN

CONTENTS

Preface		Xi	
Foreword to second edition Foreword to previous edition (1991)			
Cha	apter 1 Basic survey	1	
1.1	Acoustic waves in solids	2	
1.2	Propagation effects and materials	7	
1.3	Basic properties of Interdigital Transducers	9	
	1.3.1 Transducer reflectivity and the triple-transit signal	9	
	1.3.2 Non-reflective transducers: delta-function model	11	
1.4	Apodization and transversal filtering	18	
1.5	Correlation and signal processing	22	
1.6	Wireless interrogation: sensors and tags	24	
1.7	Resonators and low-loss filters		
	1.7.1 Gratings and resonators	26	
	1.7.2 Low-loss filters for RF	27	
	1.7.3 Low-loss filters for IF	29	
•	1.7.4 Performance of bandpass filters	31	
1.8	Summary of devices and applications	33	
0.1			
Cna	apter 2 Acoustic waves in elastic solids	38	
2.1	Elasticity in anisotropic materials	38	
	2.1.1 Non-piezoelectric materials	39	
	2.1.2 Piezoelectric materials	41	
2.2	Waves in isotropic materials	43	
	2.2.1 Plane waves	44	
	2.2.2 Rayleigh waves in a half-space	46	
	2.2.3 Shear-horizontal waves in a half-snace	51	

vi	Contents
----	----------

	2.2.4	Waves in a layered half-space	51
	2.2.5	Waves in a parallel-sided plate	55
2.3		in anisotropic materials	57
	2.3.1	Plane waves in an infinite medium	57
	2.3.2	Theory for a piezoelectric half-space	58
	2.3.3	Surface-wave solutions	60
	2.3.4 2.3.5	Other solutions	63
	2.3.3	Surface waves in layered substrates: perturbation theory	65
Cha	pter 3	Electrical excitation at a plane surface	68
3.1	Electro	static case	68
3.2	Piezoel	lectric half-space	72
3.3		properties of the effective permittivity	75
3.4	-	s function	79
3.5		applications of the effective permittivity	82
5.5	Outer t	appreations of the effective permittivity	02
Cha	pter 4	Propagation effects and materials	87
4.1	Diffrac	tion and beam steering	87
	4.1.1	Formulation using angular spectrum of plane waves	88
	4.1.2	Beam steering in the near field	90
	4.1.3	Minimal-diffraction orientations	91
	4.1.4	Diffracted field in the parabolic approximation: scaling	92
	4.1.5	Two-transducer devices	95
4.2	Propag	ation loss and non-linear effects	100
4.3	Temper	rature effects and velocity errors	101
4.4	Materia	als for surface-wave devices	104
	4.4.1	Orientation: Euler angles	104
	4.4.2	Single-crystal materials	105
	4.4.3	Thin films	108
Cha	pter 5	Non-reflective transducers	114
5.1	-	is for a general array of electrodes	115
5.1	5.1.1	The quasi-static approximation	115
	5.1.2	Electrostatic equations and charge superposition	118
	5.1.3	Current entering one electrode	122
	5.1.4	Evaluation of the acoustic potential	123
5.2	Quasi-s	static analysis of transducers	125
	5.2.1	Launching transducer	125
	5.2.2	Transducer admittance	127
	5.2.3	Receiving transducer	128
5.3	Summa	ary and P-matrix formulation	130

Contents		vii

5.4	Transducers with regular electrodes; element factor	134
- 5.5	Admittance of uniform transducers	139
	5.5.1 Acoustic conductance and susceptance	140
	5.5.2 Capacitance	143
	5.5.3 Comparative performance	144
5.6	Two-transducer devices	145
	5.6.1 Device using unapodized transducers	146
	5.6.2 Device using an apodized transducer	149
	5.6.3 Admittance of apodized transducers	152
	5.6.4 Two-transducer device using a multistrip coupler	154
Cha	apter 6 Bandpass filtering using non-reflectiv	e
	transducers	157
6.1	Basic properties of uniform transducers	158
6.2	Apodized transducer as a transversal filter	161
6.3	Design of transversal filters	169
0.5	6.3.1 Use of window functions	169
	6.3.2 Optimized design: the Remez algorithm	173
	6.3.3 Withdrawal weighting	175
6.4	Filter design and performance	177
Cha	apter 7 Correlators for pulse compression rac communications	dar and 183
7.1	Pulse compression radar	184
7.2	Chirp waveforms	187
	7.2.1 Waveform characteristics	187
	7.2.2 Weighting of linear-chirp filters	192
7.3	Interdigital chirp transducers and filters	196
	7.3.1 Chirp transducer analysis	197
	7.3.2 Transducer design	202
	7.3.3 Filter design and performance	204
7.4	Reflective array compressors	208
7.5	Doppler effects and spectral analysis	210
7.6	Correlation in spread-spectrum communications	212
	7.6.1 Principles of spread-spectrum systems	212
	7.6.2 Linear matched filters for PSK	214
	7.6.3 Non-linear convolvers	215
Cha	apter 8 Reflective gratings and transducers	225
8.1	Reflective array method for gratings and transducers	226
	8.1.1 Infinite-length grating	226

.,	ñ	Ē	ĕ
v	ı	r	r

Contents

	8.1.2 Finite-length grating	229
	8.1.3 Transducer with regular electrodes	231
	8.1.4 Reflectivity and velocity for single-electrode	
	transducers	233
8.2	Coupling of Modes (COM) Equations	238
	8.2.1 Derivation of equations 8.2.2 General solution for a uniform transducer	238
	8.2.2 General solution for a uniform transducer8.2.3 The Natural SPUDT effect in single-electrode	242
	transducers	248
8.3	Numerical evaluation of COM parameters	251
0.0	8.3.1 Theoretical methods for periodic structures	251
	8.3.2 Coupled-mode parameters from band edge frequencies	256
Cha	pter 9 Unidirectional transducers and their	
	application to bandpass filtering	263
9.1	General considerations	264
9.2	DART mechanism and analysis	266
9.3	Bandpass filtering using DARTs	274
9.4	Other SPUDT structures and analysis for parameters	278
9.5	Other SPUDT filters	282
9.6	Other low-loss techniques	286
Cha	pter 10 Waveguides and transversely coupled	
0110	resonator filters	293
10.1	Basic strip waveguides	294
	Waveguide modes in interdigital devices	294 299
10.2		302
10.4		304
10.5		304
10.6	Waveguides including electrode reflectivity	312
10.0	waveguides including electronic remediatily	312
Cha	pter 11 Resonators and resonator filters	317
11.1	Resonator types	318
	11.1.1 Gratings and cavities	318
	11.1.2 Single-port resonator	322
	11.1.3 Two-port resonator	326
11.0	11.1.4 Single-electrode transducer as resonator	330
11.2	· · · · · · · · · · · · · · · · · · ·	332
11.3	Impedance Element Filters	335
11.4	Leaky waves	340
	11.4.1 Leaky waves and surface-skimming bulk waves	340

Contents	ix

	Contents	11/
		0.40
	11.4.2 Leaky waves in lithium tantalate	342
	11.4.3 Coupled-mode analysis of gratings and transducers 11.4.4 Other leaky waves	346 351
11.5	- I D II G I I D II G D II D	352
11.5	Longitudinally Coupled Action (2014) Interp	
App	pendix A Fourier transforms and linear filters	359
A .1	Fourier transforms	359
A.2	Linear filters	363
A.3	Matched filtering	366
A.4	Non-uniform sampling	369
A.5	Some properties of bandpass waveforms	371
A.6	Hilbert transforms	376
Apr	pendix B Reciprocity	378
B.1	General relation for a mechanically free surface	378
B.2	Reciprocity for two-terminal transducers	379
B.3	Symmetry of the green's function	383
B.4	Reciprocity for surface excitation of a half-space	384
B.5	Reciprocity for surface-wave transducers	384
B.6	Surface-wave generation	387
	i i	
App	pendix C Elemental charge density for	
	regular electrodes	390
C.1	Some properties of legendre functions	390
C.2	Elemental charge density	393
C.3	Net charges on electrodes	395
Арр	pendix D P-matrix relations	397
D.1	General relations	397
D.2	Cascading formulae	400
Apr	pendix E Electrical loading in an array of	
[-]	regular electrodes	409
E.1	General solution for low frequencies	409
E.2	Propagation outside the stop band	414
E.3	Stop bands	417
E.4	Theory of the multistrip coupler	421
Ind	ex	423