CONTENTS

Preface ix
Notations xiii

1. Alloying Elements and Dopants: Phase Diagrams 1
 1.1 The Role of Alloying Elements and Dopants: Basic Alloy Systems 1
 1.2 Phase Diagrams of Ternary Systems 14
 1.2.1 The Al–Be–Fe system 14
 1.2.2 The Al–Be–Si system 15
 1.2.3 The Al–Ce–Cu system 16
 1.2.4 The Al–Ce–Fe system 18
 1.2.5 The Al–Ce–Ni system 20
 1.2.6 The Al–Ce–Si system 21
 1.2.7 The Al–Cr–Fe system 22
 1.2.8 The Al–Cr–Mg system 23
 1.2.9 The Al–Cr–Mn system 24
 1.2.10 The Al–Cr–Si system 26
 1.2.11 The Al–Cu–Fe system 26
 1.2.12 The Al–Cu–Mg system 29
 1.2.13 The Al–Cu–Mn system 32
 1.2.14 The Al–Cu–Ni system 34
 1.2.15 The Al–Cu–Si system 36
 1.2.16 The Al–Cu–Zn system 36
 1.2.17 The Al–Fe–Mg system 38
 1.2.18 The Al–Fe–Mn system 39
 1.2.19 The Al–Fe–Ni system 41
 1.2.20 The Al–Fe–Si system 42
 1.2.21 The Al–Mg–Mn system 45
 1.2.22 The Al–Mg–Si system 45
 1.2.23 The Al–Mg–Zn system 47
 1.2.24 The Al–Mn–Ni system 49
 1.2.25 The Al–Mn–Si system 53
 1.2.26 The Al–Ni–Si system 54
 1.3 Phase Diagrams of Four-Component Systems 55
 1.3.1 The Al–Be–Fe–Si phase diagram 56
 1.3.2 The Al–Cu–Fe–Mg system 58
 1.3.3 The Al–Cu–Fe–Mn system 58
 1.3.4 The Al–Cu–Fe–Ni system 60
 1.3.5 The Al–Cu–Fe–Si system 62
 1.3.6 The Al–Cu–Mg–Mn system 64
1.3.7 The Al–Cu–Mg–Si system
1.3.8 The Al–Cu–Mg–Zn system
1.3.9 The Al–Fe–Mg–Mn system
1.3.10 The Al–Fe–Mg–Si system
1.3.11 The Al–Fe–Mn–Si system
1.3.12 The Al–Fe–Ni–Si system
1.3.13 The Al–Mg–Mn–Si system
1.3.14 The Al–Mg–Ni–Si system
1.4 Five-Component Phase Diagrams
1.4.1 The Al–Fe–Cu–Mg–Si system
1.4.2 Five-component Systems with manganese

2. Structure and Microstructure of Aluminum Alloys in As-Cast State

2.1 Phase Diagrams, Thermodynamics, and Alloy Microstructure
2.2 Equilibrium Thermodynamics and Its Development
 2.2.1 Classical equilibrium thermodynamics
 2.2.2 Equilibrium thermodynamics of concentrationally non-uniform systems
2.3 Brief Description of Solidification Microstructure Evolution in Casting Aluminum Alloys via the “Phase-Field” Approach
 2.3.1 Phase-field approach applied to solidification
 2.3.2 Dendritic solidification of pure metals
 2.3.3 Phase-field model for solidification of eutectic alloys
 2.3.4 Solidification microstructure calculations: perspectives and future work
2.4 Quantitative Characteristics of Alloy Structure and Methods of its Evaluation
2.5 Non-Equilibrium Solidification of Binary Alloys
 2.5.1 Microsegregation
 2.5.2 Influence of cooling rate upon solidification and formation of constituent particles of secondary (excessive) phases
2.6 Non-Equilibrium Solidification of Multi-Component Alloys
 2.6.1 Non-equilibrium phase diagrams of multicomponent systems
 2.6.2 Microsegregation in three-component and industrial aluminum alloys
2.7 Microstructure of Cast Aluminum Alloys
2.8 Substructure of Casting Aluminum Alloys
 2.8.1 Types of dislocation structures in as-cast aluminum alloys of different systems
 2.8.2 The influence of solidification conditions upon dislocation microstructure
 2.8.3 The mechanisms of formation of dislocation microstructures in cast aluminum alloys
 2.8.4 Decomposition of aluminum solid solution in the process of alloy cooling after the completion of solidification
3. Influence of Heat Treatment Upon Microstructure of Casting Aluminum Alloys 183

3.1 Homogenizing Heat Treatment 184
3.1.1 Dissolution of non-equilibrium constituent particles in the course of homogenization 184
3.1.2 Elimination of microsegregation during homogenization 200
3.1.3 Fragmentation and spheroidization of constituent particles 213
3.1.4 Changes of grain and dislocation microstructure of aluminum solid solution in the course of homogenization 222
3.1.5 Decomposition of aluminum solid solution in the process of isothermal heat treatment before quenching 230
3.1.6 Development of porosity during homogenization 240

3.2 Aging After Casting and Quenching 240

4. Dependence of Castability and Mechanical Properties on Composition and Microstructure of Aluminum Alloys 247

4.1 Castability 247
4.1.1 General characterization of castability 247
4.1.2 Concentration dependence of casting properties 258

4.2 Mechanical Properties 262
4.2.1 Geometry of elongation diagrams for as-cast and quenched aluminum alloys, and its connection to the structural transformations accompanying deformation 266
4.2.2 Quantitative analysis of relations between tensile mechanical properties and structural characteristics of castings 280
4.2.3 Calculations of mechanical properties of castings using the totality of microstructural characteristics 295
4.2.4 The influence of casting microstructure upon fracture toughness and fatigue properties 302
4.2.5 Some regularities in changes of mechanical properties with alloy chemical composition 311

5. Industrial Casting Aluminum Alloys 327

5.1 Al–Si Alloys 327
5.1.1 General characterization of Al–Si alloys 327
5.1.2 Industrial 4xx and 3xx casting alloys without copper and zinc ("copper-less" alloys) 336
5.1.3 Industrial Al–Si alloys with copper and zinc 351
5.1.4 Engine piston Al–Si alloys 367

5.2 Alloys on the Basis of the Al–Cu System 376

5.3 Al–Mg and Al–Mg–Zn Alloys 386
5.3.1 General characteristic of Al–Mg alloys 386
5.3.2 Industrial Al–Mg and Al–Mg–Zn alloys 390
6. **New Alloys**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Alloys with Small Amounts of Eutectic</td>
<td>397</td>
</tr>
<tr>
<td>6.2</td>
<td>General Principles of Alloying for Eutectic Materials</td>
<td>405</td>
</tr>
<tr>
<td>6.3</td>
<td>High-Strength Alloy AZ6N4 and ATs7Mg3N4 (734)</td>
<td>418</td>
</tr>
<tr>
<td>6.4</td>
<td>Alloys Doped with Transition Metals for Improved Thermal Stability</td>
<td>425</td>
</tr>
<tr>
<td>6.5</td>
<td>Alloys with Small Amounts of Silicon (<4%Si)</td>
<td>441</td>
</tr>
</tbody>
</table>

Literature

Appendix 1 Compositions of Standard Casting Aluminum Alloys

Appendix 2 Principal Characteristics of Binary Phase Diagrams Closer to Aluminum Side

Appendix 3 Guaranteed Mechanical Properties of Standard Russian Aluminum Alloys

Appendix 4 Recommended Heat Treatments of Standard Russian Casting Aluminum Alloys

Appendix 5 Data on Fracture Toughness and Shock Toughness, Fatigue Life, Characteristics of Thermal Stability, Corrosion Resistance, and Castability of Standard Al–Si Alloys

Appendix 6 Derivation of Equations Describing Uniaxial Tensile Testing in Finite Deformations

A.6.1 The Case of Infinitesimally Small Deformations

A.6.2 The Case of Finite Deformations

Index

523