P. G. Smith

Applications of Fluidization to Food Processing

Contents

Preface Glossary	
1 A Description of Fluidized Bed Behaviour	3
An introduction to fluidization	3
Industrial applications of fluidization	7
Applications of fluidization in the food industry	8
Gas-solid fluidized bed behaviour	9
Influence of gas velocity	9
Geldart's classification	11
Bubbles and particle movement	13
Bubble formation at the distributor	13
Bubble growth and bubble shape	13
Minimum bubbling velocity	16
Bubble rise velocity	17
Particle movement due to bubble motion	18
Distributor plate design	20
Characterisation of particulate solids	22
Particle size distribution	22
Mean particle size	24
Particle shape	26
Bulk particle properties	27
Terminal falling velocity and particle drag coefficient	28
Minimum fluidizing velocity in aggregative fluidization	31
Voidage and pressure drop at incipient fluidization	32
Carman-Kozeny equation	32
Ergun equation	35
Minimum fluidizing velocity as a function of terminal	C -
falling velocity	37
Semi-empirical correlations	39
Experimental measurement	40

	Fluidized bed behaviour at high gas velocities	40
	Slugging	40
	Turbulent fluidization and fast fluidization	42
	Elutriation and entrainment	42
	Other types of fluidization	45
	Spouted beds	45
	Centrifugal fluidization	47
	Particulate fluidization	48
	Nomenclature	50
	References	52
2	Characteristics of Aggregative Fluidization	55
	Heat transfer	55
	Correlations for heat transfer coefficients	55
	Bed-surface heat transfer	56
	Gas-particle heat transfer	57
	Gas-particle heat transfer coefficient	58
	Mass transfer	61
	Correlations for mass transfer coefficients	61
	Gas-particle mass transfer	62
	Mixing	64
	Introduction	64
	Mechanisms of solids mixing	65
	Mixing in fluidized beds	66
	Vertical mixing of solids: the dispersion model	66
	Rate of mixing	68
	Mixing and segregation of dissimilar particles	68
	Mechanisms	68
	Patterns of particle segregation	70
	Examples of fluidized bed segregation	73
	Nomenclature	73
	References	<i>7</i> 5
Pa	art Two: Applications	77
3	Freezing	79
	Low-temperature preservation of foods	79
	Introduction	79
	Industrial freezing equipment	80
	Fluidized bed freezing	81
	Capacity of fluidized bed freezers	84
	Freezing rate and freezing point of foods	87
	Prediction of freezing time	89

	Design of fluidized bed freezers	92
	Introduction	92
	Heat transfer in fluidized bed freezers	92
	Mixing, dispersion and residence time	103
	Applications of fluidized bed freezing	105
	Nomenclature	108
	References	110
4	Drying	113
	Introduction	113
	Principles of drying	115
	Water activity	115
	Effect of water activity on microbial growth	116
	Effect of drying on food structure	117
	Isotherms and equilibrium	117
	Drying kinetics	119
	Classification of driers	121
	Fluidized bed drying	122
	Material and energy balances	122
	The well-mixed drier	124
	The plug flow drier	127
	Variations in fluidized bed drier design	129
	Other fluidized bed drying techniques	130
	Vibro-fluidization	130
	Mechanical agitation	131
	Centrifugal fluidization	132
	Spouted bed drying	132
	Microwave drying	133
	Nomenclature	134
	References	135
5	Granulation	139
	Granulation and particle growth	139
	Particle-particle bonding	142
	Bonding mechanisms	142
	Growth mechanisms in granulation	144
	Fluidized bed granulation	145
	Introduction	145
	Principles of operation of fluidized bed granulation	146
	Material and energy balances	149
	Batch and continuous operation: population balance	150
	Bed quenching	151
	Effect of variables on growth	153
	Rate and volume of feed	153

	Nozzle position and atomising air rate	154
	Bed temperature	155
	Fluidizing gas velocity	155
	Particle size	157
	Binder properties	157
	Fluidized bed granulation growth models	159
	Layered growth model	159
	Agglomeration model	161
	A theory of fluidized bed granulation	163
	Particle growth mechanisms in fluidized bed	
	granulation	163
	Fluidizing gas velocity and particle mixing	164
	Binder properties	164
	The balance between granulation and fluidization	165
	Factors leading to bed quenching	166
	An overall mechanism	166
	Food applications of fluidized bed granulation	169
	Instantising	169
	Encapsulation and coating	171
	Other applications	174
	Spouted bed granulation	176
	Nomenclature	177
	References	179
6	Gas-Solid Fluidized Bed Fermentation	185
	Principles of fluidized bed fermentation	185
	Fermentation of glucose by Saccharomyces cerevisiae	187
	Metabolism	187
	Production of cell mass and ethanol yield	188
	Factors affecting ethanol production	189
	Glucose concentration	189
	Gaseous environment	190
	Ethanol inhibition	191
	Temperature	191
	рН	192
	Moisture content	192
	Mass transport limitations	192
	Fluidized bed fermentation systems	193
	Basic fluidization considerations	193
	Anaerobic ethanol production	194
	Aerobic ethanol production	195
	Agglomeration, quenching and the glucose sink	196
	The work of Hayes (1998)	198
	A description of the experimental system	198

	Dry quenching experiments	201
	Ethanol production with grated pellets	202
	Ethanol production with extruded pellets	203
	A model for fluidized bed fermentation	206
	Material and energy balances	206
	Ethanol-water vapour-liquid equilibria	210
	The model of Beck and Bauer (1989)	210
	The model of Hayes (1998)	212
	Modelling the time course of ethanol production	213
	Comparison of models with experimental data	215
	Conclusion	216
	Nomenclature	219
	References	220
7	Other Applications of Fluidization	224
	Introduction	224
	Gas-solid fluidization	224
	Blanching	224
	Roasting	226
	Explosion puffing	227
	Sterilisation	228
	Disinfestation of wheat	229
	Freeze drying	230
	Liquid-solid fluidization	231
	Bioreactions	231
	Sterilisation	233
	Ultrafiltration and reverse osmosis	234
	Other applications	235
	References	235
In	dex	239