
Genetic Engineering and Biotechnology

Concepts, Methods and Agronomic Applications

Yves Tourte

Contents

Preface	V
Introduction	1
Chapter 1. Some basic concepts of biology	3
1.1. Biology and plant physiology	3
1.1.1. The range of living organisms and the place of plants	3
1.1.2. Plant growth and development	8
1.1.3. Plant reproduction	20
1.2. Agronomy	38
1.2.1. Wild plants and cultivated plants	38
1.2.2. Agriculture and agronomy	39
1.2.3. The objectives of agriculture	42
1.3. Cellular and molecular biology	54
1.3.1. Information in the cell	54
1.3.2. Controlling genetic information	61
Chapter 2. Plant biotechnology and genetic engineering	75
2.1. A new science but an old partner of agriculture	75
2.2. In vitro culture	76
2.2.1. In vitro culture of organs and tissues	76
2.2.2. In vitro culture of meristems	79
2.2.3. Culture of plant cells	84
2.2.4. Protoplasts	88
2.2.5. In vitro culture of haploids	94
2.3. Gene transfer in plants	99
2.3.1. A practice as "old" as life	99

Genetic	Engineering	and Biotech	nology
---------	-------------	-------------	--------

	٠	-	
11	1	ı	
v	ı	ı	

	2.3.2. Crown gall disease and natural genetic engineering	100
	2.3.3. Controlled genetic engineering	103
2.4.	Plant biotechnology and other biotechnologies	121
Cha	pter 3. Applications of biotechnology and genetic engineering	125
3.1.	Examples of the impact of biotechnology and	105
	genetic engineering on agronomy	125
٠	3.1.1. Problems of choice and evaluation	125
	3.1.2. Plants affected by biotechnology	126
	3.1.3. The whole plant and its organs 3.1.4. Major metabolic pathways	$\frac{128}{130}$
	3.1.5. Resistance and plant protection	140
	3.1.6. Molecular markers and plant breeding	148
	3.1.7. A provisional assessment	149
3.2.	Plant biotechnology and bio-industries	149
	3.2.1. A quick overview of bio-industries	149
	3.2.2. Agro-food industry	152
	3.2.3. Fibre industry	156
	3.2.4. The health sector	158
	3.2.5. The environment	161
	3.2.6. The energy sector	163
	3.2.7. A provisional assessment	164
Cha	pter 4. Plant biotechnologies and bioethics	167
4.1.	Evaluation of risks	167
	4.1.1. Transmission of transgenes through food	168
	4.1.2. Behaviour of the transgene in its new environment	169
	4.1.3. Flow and dissemination of transgenes	170
	4.1.4. Appearance of resistance	171
	4.1.5. Ownership of transformed plants	172
4.2.	Evaluation of advantages	172
	4.2.1. A remarkable tool of knowledge	173
	4.2.2. Productive and environment-friendly agriculture	173
	4.2.3. More focused industrial uses	174
4.3.	Regulatory mechanisms	175

Contents	ix
Conclusion. The future of biotechnology and genetic engineering in plants	177
Excercises Possible Answers	178 181
Glossary	187
Index	195