

CAMBRIDGE

Contents

	Intro	oduction		<i>page</i> xi
	Ack	iowledgements		XV
1	An i	ntroduction to climate cl	hange	1
	1.1	Weather or climate		2
	1.2	The greenhouse effect	•	3
	1.3	The carbon cycle		10
	1.4	Natural changes in the	e carbon cycle	20
	1.5	Pacemaker of the glaci	ial-interglacial cycles	22
	1.6	Non-greenhouse influe	ences on climate	28
	1.7	The water cycle, clima	te change and biology	31
	1.8	From theory to reality	·	33
	1.9	References		35
2	Prin	cipal indicators of past o	elimates	37
	2.1	Terrestrial biotic clima	itic proxies	39
		2.1.1 Tree-ring analy	sis (dendrochronology)	39
		2.1.2 Isotopic dendro	ochronology	43
		2.1.3 Leaf shape (mo	rphology)	45
		2.1.4 Leaf physiology	7	46
		2.1.5 Pollen and spor		47
		2.1.6 Species as clima	ate proxies	50
	2.2	Marine biotic climatic	proxies	53
		2.2.1 ¹⁸ O isotope ana	llysis of forams and corals	53
		2.2.2 Alkenone analy	*	58
	2.3	Non-biotic indicators		59
		2.3.1 Isotopic analysi	is of water	59
		2.3.2 Boreholes		61
		2.3.3 Carbon dioxide	and methane records as	
		palaeoclimatic i	forcing agents	61
		•	cator of dry-wet hemispheric climates	63
	2.4	Other indicators	•	63

vi Contents

	2.5	Interp	preting indicators	64
	2.6	Concl	usions	64
	2.7	Refer	ences	65
3	Past	climat	re change	67
	3.1	Early	biology and climate of the Hadean and Archeaen	
		eons (4.6–2.5 billion years ago, bya)	67
		3.1.1	The pre-biotic Earth (4.6–3.8 bya)	67
		3.1.2	The early biotic Earth (3.8–2.3 bya)	68
	3.2	Majo	r bio-climatic events of the Proterozoic eon	
		(2.5-0)	0.542 bya)	71
		3.2.1	Earth in the anaerobic–aerobic transition	
			(2.6–1.7 bya)	71
		3.2.2	The aerobic Earth (from 1.7 bya)	74
	3.3	Major	r bio-climatic events of the pre-Quaternary Phanerozoic	
		(540-3)	2 mya)	77
		3.3.1	Late-Ordovician extinction (455–435 mya)	77
		3.3.2	Late-Devonian extinction (365–363.5 mya)	78
		3.3.3	Vascular plants and the atmospheric depletion	
			of carbon dioxide (350–275 mya)	79
		3.3.4	Permo-Carboniferous glaciation (330-250 mya)	81
		3.3.5	End-Permian extinction (251 mya)	83
		3.3.6	End-Triassic extinction (205 mya)	85
		3.3.7	Toarcian (early (late lower) Jurassic) extinction	
			(183 mya)	86
		3.3.8	Cretaceous–Tertiary extinction (65.5 mya)	87
		3.3.9	Eocene climatic maximum (55–54.8 mya)	90
		3.3.10	Eocene-Oligocene extinction (approximately 35 mya;	
			or 33.9 mya?)	101
		3.3.11	Late Miocene expansion of C ₄ grasses (14–9 mya)	103
	3.4	Sumn	nary	108
	3.5	Refer	ences	109
4		_	ene to the Quaternary: climate and biology	113
	4.1		Oligocene (33.9–23.03 mya)	113
	4.2		nd Miocene (9–5.3 mya)	115
	4.3		liocene (5.3–1.8 mya)	116
	4.4		urrent ice age	120
	4.5		ast glacial	126
		4.5.1	Overview of temperature, carbon dioxide and timing	126
			Ice and sea level	129
		4.5.3	Temperature changes within the glacial	130

('outouts	V11
Contents	VII

		4.5.4	Biological and environmental impacts of the last glacial	141
	4.6	Interg	glacials and the present climate	148
		4.6.1	Previous interglacials	148
		4.6.2	The Allerød, Bølling and Younger Dryas	
			(14 600–11 600 years ago)	152
		4.6.3	The Holocene (11 500 years ago – the Industrial	
			Revolution)	159
		4.6.4	Biological response to the last glacial, LGM and	
			Holocene transition '	168
	4.7	Sumn	nary	178
	4.8	Refer	ences	179
5	Pres	sent clir	mate and biological change	184
	5.1	Recer	nt climate change	184
		5.1.1	The latter half of the Little Ice Age	184
		5.1.2	Twentieth-century climate	188
		5.1.3	Twenty-first-century climate	189
		5.1.4	The Holocene interglacial beyond the twenty-first	
			century	189
		5.1.5	Holocene summary	191
	5.2	Huma	an change arising from the Holocene climate	193
		5.2.1	Climatic impacts on early human civilisations	193
		5.2.2	The Little Ice Age's human impact	194
		5.2.3	Increasing twentieth-century human climatic	
			insulation	200
	5.3	Clima	ate and business as usual in the twenty-first century	201
		5.3.1	IPCC Business as Usual	201
		5.3.2	Uncertainties and the IPCC's conclusions	213
	5.4		ent human influences on the carbon cycle	222
			Carbon dioxide	222
			Methane	226
			Halocarbons	227
		5.4.4	Nitrous oxide	228
	5.5		rences	228
6			arming and likely future impacts	231
	6.1		ent biological symptoms of warming	231
		6.1.1	Current boreal dendrochronological response	231
		6.1.2	Current tropical-rainforest response	233
		6.1.3	Some biological dimensions of the climatic-change	
		_	fingerprint	235
		6.1.4	Phenology	238

viii Contents

		6.1.5	Biological communities and species shift	240
	6.2	Case	study: climate and natural systems in the USA	253
	6.3	Case	study: climate and natural systems in the UK	264
	6.4	Biolo	gical response to greenhouse trends beyond the	
		twent	y-first century	275
	6.5	Possi	ble surprise responses to greenhouse trends in the	
		twent	y-first century and beyond	276
		6.5.1	Extreme weather events	276
		6.5.2	Greenhouse gases	279
		6.5.3	Sea-level rise	280
		6.5.4	Methane hydrates (methane clathrates)	289
		6.5.5	Volcanoes	293
		6.5.6	Oceanic and atmospheric circulation	296
		6.5.7	Ocean acidity	301
		6.5.8	The probability of surprises	304
	6.6	Refer	rences	305
7	The	human	ecology of climate change	310
	7.1	_	lation (past, present and future) and its	
			onmental impact	310
			Population and environmental impact	310
			Past and present population	319
			Future population	322
			Food	325
			Impact on other species	327
	7.2	-	gy supply	330
			Energy supply – the historical context	331
			Future energy supply	337
	7.3		an health and climate change	343
			Health and weather extremes	345
			Climate change and disease	353
			Flooding and health	361
			Droughts	368
	7.4		ate change and food security	368
		7.4.1	Past and present food security	368
		7.4.2	,	371
	7.5		piology of reducing anthropogenic climate change	377
		7.5.1	Terrestrial photosynthesis and soil carbon	378
		7.5.2	Manipulating marine photosynthesis	383
		7.5.3	Biofuels	384
	7.6	Sumr	nary and conclusions	387

ints in	Х
nts ix	Х

	7.7	Refere	ences	388
8	Sust	ainabil	ity and policy	392
	8.1	Key d	levelopments of sustainability policy	392
		8.1.1	UN Conference on the Human Environment (1972)	392
		8.1.2	The Club of Rome's Limits to Growth (1972)	395
		8.1.3	World Climate Conference (1979)	396
		8.1.4	The World Conservation Strategy (1980)	397
		8.1.5	The Brandt Report – Common Crisis North-South (1980)	398
		8.1.6	The Brundtland, World Commission on Environment	
			and Development Report (1987)	399
		8.1.7	United Nations' Conference on the Environment	
			and Development – Rio de Janeiro (1992)	400
		8.1.8	The Kyoto Protocol (1997)	401
		8.1.9	Johannesburg Summit – UNCED+10 (2002)	403
		8.1.10	Post 2002	405
	8.2	Energ	gy sustainability and carbon (global)	406
		8.2.1	Prospects for savings from changes in land use	409
		8.2.2	Prospects for savings from improvements in energy	
			efficiency	410
		8.2.3	Prospects for fossil-carbon savings from renewable	
			energy	414
		8.2.4	Prospects for carbon-capture technology	415
		8.2.5	Prospects for nuclear options	419
		8.2.6	Overall prospects for fossil-carbon savings to 2025	423
	8.3	Energ	gy policy and carbon	425
		8.3.1	Case history: USA	426
		8.3.2	Case history: UK	431
		8.3.3	Case history: China and India	439
	8.4	Possil	ble future energy options	445
		8.4.1	Managing fossil-carbon emissions – the scale	
			of the problem	445
		8.4.2	Fossil futures	447
		8.4.3	Nuclear futures	448
		8.4.4	Renewable futures	449
		8.4.5	Low-energy futures	450
		8.4.6	Possible future energy options and greenhouse gases	451
	8.5	Futur	re human and biological change	453
		8.5.1	The ease and difficulty of adapting to future impacts	457
		8.5.2	Future climate change and human health	461

x Contents

	8.5.3	Future climate and human-ecology implications	
		for wildlife	462
	8.5.4	Reducing future anthropogenic greenhouse-gas	
		emissions	464
	8.5.5	A final conclusion	465
8.6	Refer	rences	466
App	endix I	! Glossary and abbreviations	469
G	lossary	,	469
A	bbrevia	ations	472
App	endix 2	? Bio-geological chronology	475
App	endix 3	3 Calculations of energy demand/supply and orders	
of n	ıagnitu	de	478
C	alculat	ions of energy demand/supply	478
0	rders o	f magnitude	479
S	ources		479
App	endix 4	4 The IPCC 2007 report	480
Inde	ex	-	482