

ENGINEERING APPLICATIONS OF DYNAMICS

Dean C. Karnopp • Donald L. Margolis

CONTENTS

Preface xi

1	Newton's La	ws for Particles	and Rigid Bodies	1
	TICH COIL S LA	ms for a armeter	and Mgia Doules	

- 1.1 Newton's Second Law, 2
- 1.2 Coordinate Frames and Velocity and Acceleration Diagrams, 3

Rectangular Coordinates, 3

Polar Coordinates, 4

Coordinate Choice and Degrees-of-Freedom, 8

- 1.3 Free-Body and Force Diagrams, 9
- 1.4 Transferring Velocity and Acceleration Components, 11
- 1.5 Transferring Motion Components of Rigid Bodies and Generating Kinematic Constraints, 16

Kinematic Constraints, 18

- 1.6 Review of Center of Mass, Linear Momentum, and Angular Momentum for Rigid Bodies, 21
- 1.7 Newton's Law Applied to Rigid Bodies, 25

Reference, 27

Problems, 27

2 Equations of Motion in Second- and First-Order Form 41

2.1 Deriving Equations of Motion for Systems of Particles, 41

2.2	Deriving Equations of Motior	When Rigid	Bodies A	Are Part	of the
	System, 46				

2.3 Forms of Equations and Their Computational Solution, 55

First-Order State Equations, 56

Explicit Form, 56

Fundamentals of Computer-Developed Time-Step

Simulation, 57

Implicit Form, 57

Differential Algebraic Form, 58

- 2.4 Reducing Sets of Second-Order Differential Equations to First-Order Form, 58
- 2.5 Matrix Forms for Linearized Equations, 64

Quarter-Car Model for Vibration Analysis, 64

Half-Car Model for Vibration Analysis and Control, 68

Linearization of the Inverted Pendulum, 71

2.6 Summary, 73

References, 74

Problems, 74

3 Computer Solution of Equations of Motion 92

- 3.1 Time-Step Simulation of Nonlinear Equations of Motion, 92
- 3.2 Linear System Response, 107

Eigenvalues and Their Relationship to System Stability, 107

Transfer Functions, 110

Frequency Response, 114

References, 118

Problems, 119

4 Energy and Lagrange Equation Methods 135

- 4.1 Kinetic and Potential Energy, 136
- 4.2 Using Conservation of Energy to Derive Equations of Motion, 139
- 4.3 Equations of Motion from Lagrange's Equations, 141

Generalized Coordinates, 141

Lagrange's Equations, 144

Generalized Forces, 146

Imposed Motion, 148

- 4.4 Interpretation of Lagrange's Equations, 150
- 4.5 Nonlinear Kinematics and Lagrange's Equations, 152

Approximate Method for Satisfying Constraints, 156

4.6 First-Order Forms for Lagrange's Equations, 158

Example System, 160

Comments Regarding the Use of p and q Variables in Simulation, 161

- 4.7 Nonholonomic Systems, 162
- 4.8 Summary, 162

References, 163

Problems, 163

5 Newton's Laws in a Body-Fixed Frame: Application to Vehicle Dynamics 180

5.1 The Dynamics of a Shopping Cart, 181

Inertial Coordinate System, 181

Body-Fixed Coordinate System, 187

Connection between Inertial and Body-Fixed Frames, 189

- 5.2 Analysis of a Simple Car Model, 190
- 5.3 Vehicle Stability, 193
- 5.4 Stability, Critical Speed, Understeer, and Oversteer, 196
- 5.5 Steering Transfer Functions, 197

Yaw Rate and Lateral Acceleration Gains, 200

Special Case of the Neutral Steering Vehicle, 200

5.6 Steady Cornering, 202

Description of Steady Turns, 202

Significance of the Understeering Coefficient, 204

Acceleration and Yaw Rate Gain Behavior, 205

5.7 Summary, 209

References, 209

Problems, 209

6 Mechanical Systems under Active Control 219

6.1 Basic Concepts, 220

Characteristic Equation, 221

Transfer Functions, 221

State-Variable Feedback, 222

6.2 State Variables and Active Control. 222

Compromises in Passive Vibration Isolation, 224

Active Control in Vibration Isolation, 226

Optimized Active Vibration Isolator, 228

6.3 Steering Control of Banking Vehicles, 231

Development of the Mathematical Model, 232

Derivation of the Dynamic Equations, 234

Stability of the Lean Angle, 237

Steering Control of the Lean Angle, 238

Counter Steering or Reverse Action, 240

6.4 Active Control of Vehicle Dynamics, 242

Stability and Control, 243

From ABS to VDC, 244

Model Reference Control, 246

Active Steering Systems, 248

Stability Augmentation Using Front, Rear, or All-Wheel

Steering, 249

Feedback Model Following Active Steering Control, 249

Sliding Mode Control, 251

Active Steering Applied to the Bicycle Model of

an Automobile, 254

Active Steering Yaw Rate Controller, 256

Limitations of Active Stability Enhancement, 260

6.5 Summary, 261

References, 261

Problems, 262

7 Rigid-Body Motion in Three Dimensions 271

- 7.1 General Equations of Motion, 272
- 7.2 Use of a Body-Fixed Coordinate Frame, 275

Euler's Equations, 276

Spin Stabilization of Satellites, 277

7.3 Use of an Inertial Coordinate Frame, 281

Euler's Angles, 283

Kinetic Energy, 285

Steady Precession of Gyroscopes, 285

Dynamics of Gyroscopes, 287

7.4 Summary, 292

References, 293

Problems, 293

8 Vibration of Multiple-Degree-of-Freedom Systems 305

8.1 Natural Frequency and Resonance of a Single-Degree-of-Freedom Oscillator, 306

Free Response, 306

Forced Response, 309

Comparison of Two Suspension Geometries, 309

8.2 Two-Degree-of-Freedom Systems, 314

Free, Undamped Response, 315

Forced Response of Two-Degree-of-Freedom Systems, 326

8.3 Tuned Vibration Absorbers, 328

Some Configurations for TVAs, 332

8.4 Summary, 339

References, 339

Problems, 340

9 Distributed System Vibrations 350

9.1 Stress Waves in a Rod, 350

Free Response: Separation of Variables, 354

Forced Response, 357

Orthogonality of Mode Functions, 359

Representation of Point Forces, 359

Rigid-Body Mode, 362

Back to the Forced Response, 363

- 9.2 Attaching the Distributed System to External Dynamic Components, 366
- 9.3 Tightly Stretched Cable, 372

Free Response: Separation of Variables, 375

Forced Response, 377

9.4 Bernoulli-Euler Beam, 379

Free Response: Separation of Variables, 382

Forced Response, 384

9.5 Summary, 388

References, 389

Problems, 389

Appendix A: Three-Dimensional Rigid-Body Motion in a Rotating Coordinate System 402

References, 407

x CONTENTS

413

Index

Appendix B: Moments of Inertia for Some Common Body Shapes 408

Appendix C: Parallel Axis Theorem 410