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Principles of Sequence Alignment

Alignment is the task of locating equivalent
regions of two or more sequences to maximize
their similarity
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It is easier to detect homology when comparing
protein sequences than when comparing nucleic
acid sequences

Scoring Alignments

The quality of an aligniment is measured by giving
it a quantitative score
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Fast yet accurate search algorithms have been
‘developed
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to limit a database search

Low-complexity regions can complicate
homology searches

Different databases can be used to solve
particular problems
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The pattern-based program PHI-BLAST searches
for both homology and matching motifs
Patterns can be generated from multiple
sequences using PRATT
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representing sets of conserved motifs that
describe a protein family
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Searches can be made for particular functional
sites in proteins

Sequence comparison is not the only way of
analyzing protein sequences
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Substitution Matrices and Scoring

Alignment scores attempt to measure the
likelihood of a common evolutionary ancestor
The PAM (MDM) substitution scoring matrices
were designed to trace the evolutionary origins
of proteins

The BLOSUM matrices were designed to find
conserved regions of proteins

Scoring matrices for nucleotide sequence
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The substitution scoring matrix used must be
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Gaps are scored in a much more heuristic way
than substitutions -

Dynamic Programming Algorithms

Optimal global alignments are produced using
efficient variations of the Needleman-Wunsch
algorithm

Local and suboptimal alignments can be produced
by making small modifications to the dynamic
programming algorithm

Time can be saved with a loss of rigor by not
calculating the whole matrix

Indexing Techniques and Algorithmic
Approximations

Suffix trees locate the positions of repeats and
unigue sequernces

Hashing {s an indexing technique that lists the
starting positions of all k-tuples
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for fast database searching
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6.6

The multiple alignment is built using the guide
tree and profile methods and may be further
refined

Other Ways of Obtaining Multiple Alignments
The multiple sequence alighment program
DIALIGN aligns ungapped blocks

The SAGA method of multiple alignment uses
a genetic algorithm
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Tree topology can be described in several ways
Consensus and condensed trees report the
results of comparing tree topologies
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Most related sequences have many positions
that have mutated several times
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same for all types of base substitution
Different codon positions have different
mutation rates

Only orthologous genes should be used to
construct species phylogenetic trees

Major changes affecting large regions of the
genome are surprisingly common

Phylogenetic Tree Reconstruction

Small ribosomal subunit rRNA sequences are well
suited to reconstructing the evolution of species
The choice of the method for tree reconstruction
depends to somme extent on the size and quality of
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204

207

207

209

211

213

215
217

218
219

225

225
230

232

235

236

236

238

239

247

248

249

249

251

255

Contents

Phylogenetic analyses of a small dataset of
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Building a gene tree for a family of enzymes can
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A simple but inaccurate measure of evolutionary
distance is the p-distance

The Poisson distance correction takes account of
multiple mutations at the same site

The Gamma distance correction takes account of
mutation rate variation at different sequence
positions

The Jukes—Cantor model reproduces some basic
features of the evolution of nucleotide sequences
Mote complex models distinguish between the
relative frequencies of different types of mutation

. There is a nucleotide bias in DNA sequences

Models of protein-sequence evolution are closely

“related to the substitution matrices used for

sequence alignment

Generating Single Phylogenetic Trees
Clustering methods produce a phylogenetic tree
based on evolutionary distances

The UPGMA method assumes a constant
molecular clock and produces an ultrametric tree
The Fitch-Margoliash method produces an
unrooted additive tree

The neighbor-joining method is related to the
concept of minimum evolution

Stepwise addition and star-decomposition
methods are usually used to generate starting
trees for further exploration, not the final tree
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be used to evaluate trees
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Mutations can be weighted in different ways
in the parsimony method

Trees can be evaluated using the maximum
likelihood method

The quartet-puzzling method also involves maximum
likelihood in the standard implementation
Bayesian methods can also be used to reconstruct
phylogenetic trees

Assessing the Reliability of Tree Features
and Comparing Trees

The long-branch attraction problem can arise
even with perfect data and methodology

Tree topology can be tested by examining the
interior branches

Tests have been proposed for comparing two
or more alternative trees
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Preliminary Examination of Genome Sequence

Whole genorme sequences can be split up to
simplify gene searches

Structural RNA genes and repeat sequences
can be excluded from further analysis

Homology can be used to identify genes in both
prokaryotic and eukaryotic genomes

Gene Prediction in Prokaryotic Genomes
Gene Prediction in Eukaryotic Genomes
Programs for predicting exons and introns use
a variety of approaches

Gene predictions must preserve the correct
reading frame

Some programs search for exons using only
the query sequence and a model for exons

Some programs search for genes using only
the query sequence and a gene model

Genes can be predicted using a gene model
and sequence similarity

Genomes of related organisms can be used
to improve gene prediction

Splice Site Detection

Splice sites can be detected independently by
specialized programs

Prediction of Promoter Regions
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Prokaryotic promoter regions contain relatively
well-defined motifs

Eukaryotic promoter regions are typically more
complex than prokaryotic promoters

A variety of promoter-prediction methods are
available online

Promoter prediction results are not very clear-cut

9.6 Confirming Predictions

There are various methods for calculating the
accuracy of gene-prediction programs

Translating predicted exons can confirm the
correctness of the prediction

Constructing the protein and identifying homologs

9.7 Genome Annotation

Genome annotation is the final step in genome
analysis

Gene ontology provides a standard vocabulary
for gene annotation

9.8 Large Genome Comparisons
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Chapter 10 Gene Detection and Genome

Annotation

10.1 Detection of Functional RNA Molecules Using
Decision Trees

Detection of tRNA genes using the tRNAscan
algorithm

Detection of tRNA genes in eukaryotic genomes
10.2 Features Useful for Gene Detection in Prokaryotes

10.3 Algorithms for Gene Detection in Prokaryotes

GeneMark uses inhomogeneous Markov chains
and dicodon statistics

GLIMMER uses interpolated Markov models of
coding potential

ORPHEUS uses homology, codon statistics, and
ribosome-binding sites

GeneMark.hmm uses explicit state duration
hidden Markov models

EcoParse is an HMM gene model

10.4 Features Used in Eukaryotic Gene Detection
Differences between prokaryotic and
eukaryotic genes
Introns, exons, and splice sites

Promoter sequences and hinding sites for
transcription factors
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10.5 Predicting Eukaryotic Gene Signals
Detection of core promoter binding signals is
a key element of some eukaryotic gene-
prediction methods
A set of models has been designed to locate
the site of core promoter sequence signals

Predicting promoter regions from general
sequence properties can reduce the numbers
of false-positive results

Predicting eukaryotic transcription and
translation start sites

Translation and transcription stop signals
complete the gene definition

10.6 Predicting Exon/Intron Structure
Exons can be identified using general sequence
properties
Splice-site prediction
Splice sites can be predicted by sequence patterns
combined with base statistics

GenScan uses a combination of weight matrices
and decision trees to locate splice sites
GeneSplicer predicts splice sites using first-order
Markov chains

NetPlantGene uses neural networks with

intron and exon predictions to predict splice sites
Other splicing features may yet be exploited for
splice-site prediction

Specific methods exist to identify initial and
terminal exons

Exons can be defined by searching databases for
homologous regions

10.7 Complete Eukaryotic Gene Models

10.8 Beyond the Prediction of Individual Genes
Functional annotation

Comparison of related genomes can help resolve
uncertain predictions

Evaluation and reevaluation of gene-detection
methods
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Chapter 11 Obtaining Secondary Structure
from Sequence
11.1 Types of Prediction Methods
Statistical methods are based on rules that give

the probability that a residue wili form part of a
particular secondary structure

Nearest-neighbor methods are statistical methods
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that incorporate additional information about
protein structure

Machine-learning approaches to secondary
structure prediction mainly make use of neural
networks and HMM methods

11.2 Training and Test Databases

There are several ways to define protein
secondary structures

11.3 Assessing the Accuracy of Prediction

Programs
Q; measures the accuracy of individual residue
assignments
Secondary structure predictions should not be
expected to reach 100% residue accuracy
The Sov value measures the prediction accuracy
for whole elements
CAFASP/CASP: Unbiased and readily available
. protein prediction assessments

11.4 Statistical and Knowledge-Based Methods

The GOR method uses an information theory
approach
' The program Zpred includes multiple alignment
" of homologous sequences and residue
conservation information
There is an overall increase in prediction accuracy
using multiple sequence information
The nearest-neighbor method: The use of multiple
nonhomologous sequences
PREDATOR is a combined statistical and
knowledge-based program that includes the
nearest-neighbor approach

11.5 Neural Network Methods of Secondary Structure

Prediction
Assessing the reliability of neural net predictions

Several examples of Web-based neural network
secondary structure prediction programs

PROF: Protein forecasting
PSIFPRED

Jnet: Using several alternative representations
of the sequence alignment

11.6 Some Secondary Structures Require Specialized

Prediction Methods
Transmembrane proteins

Quantifying the preference for a membrane
environment

11.7 Prediction of Transmembrane Protein Structure

Multi-helix membrane proteins

A selection of prediction programs to predict
transmembrane helices
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Statistical methods

Knowledge-based prediction

Evolutionary information from protein families
improves the prediction

Neural nets in transmembrane prediction
Predicting transmembrane helices with

hidden Markov models

Comparing the results: What to choose

What happens if a non-transmembrane protein is
submitted to transmembrane prediction programs

Prediction of transmembrane structure
containing [3-strands

11.8 Coiled-coil Structures
The COILS prediction program
PATRCOIL and MULTICOIL are an extension
of the COILS algorithm
Zipping the Leucine zipper: A specialized
coiled coil

11.9 RNA Secondary Structure Prediction
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Chapter 12 Predicting Secondary Structures

12.1 Defining Secondary Structure and Prediction
Accuracy

The definitions used for automatic protein secondary
structure assignment do not give identical results

There are several different measures of the
accuracy of secondary structure prediction

12.2 Secondary Structure Prediction Based on
Residue Propensities
Each structural state has an amino acid preference
which can be assigned as a residue propensity
The simplest prediction methods are based on the
average residue propensity over a sequence window

Residue propensities are modulated by nearby
sequence

Predictions can be significantly improved by
including information from homologous sequences

12.3 The Nearest-Neighbor Methods are Based on
Sequence Segment Similarity

Short segments of similar sequence are found
to have similar structure

Several sequence similarity measures have been
used to identify nearest-neighbor segments

A weighted average of the nearest-neighbor
segment structures is used to make the prediction

A nearest-neighbor method has been developed to
predict regions with a high potential to misfold
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12.4 Neural Networks Have Been Employed
Successfully for Secondary Structure Prediction
Layered feed-forward neural networks can
transform a sequence into a structural prediction
Inclusion of information on homologous
sequences improves neural network accuracy

More complex neural nets have been applied to
predict secondary and other structural features

12.5 Hidden Markov Models Have Been Applied to
Structure Prediction
HMM methods have been found especially
effective for transmembrane proteins
Nonmembrane protein secondary structures can
also be successfully predicted with HMMs

12.6 General Data Classification Techniques Can
Predict Structural Features
Support vector machines have been successfully
used for protein structure prediction

Discriminants, SOMs, and other methods have
also been used
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APPLICATIONS CHAPTER

Chapter 13 Modeling Protein Structure

13.1 Potential Energy Functions and Force Fields
The conformation of a protein can be visualized
in terms of a potential energy surface
Conformational energies can be described by
simple mathematical functions
Similar force fields can be used to represent
conformational energies in the presence of
averaged environments
Potential energy functions can be used to assess
a modeled structure
Energy minimization can be used to refine a modeled
structure and identify local energy minima
Molecular dynamics and simulated annealing
are used to find global energy minima

13.2 Obtaining a Structure by Threading
The prediction of protein folds in the absence of
known structural homologs
Libraries or databases of nonredundant protein
folds are used in threading
Two distinct types of scoring schemes have been
used in threading methods
Dynamic programming methods can identify
optimal alignments of target sequences and
structural folds

492

494

502

503

504

506

509

510

511

512

514
515

524

525

525

526

527

527

528

529

531

531

531

533



Several methods are available to assess the
confidence to be put on the fold prediction
The C2-like domain from the Dictyostelia:
A practical example of threading

13.3 Principles of Homology Modeling

Closely related target and template sequences give

better models

Significant sequence identity depends on the
length of the sequence

Homology modeling has been automated to deal with

the numbers of sequences that can now be modeled
Model building is based on a number of
assumptions

13.4 Steps in Homology Modeling

Structural homologs to the target protein are
found in the PDB

Accurate alipnment of target and template
sequences is essential for successful modeling
The structurally conserved regions of a protein
are modeled first

The modeled core is checked for misfits before
proceeding to the next stage

Sequence realignment and remodeling may
improve the structure

Insertions and deletions are usually modeled
as loops

Nonidentical amino acid side chains are modeled
mainly by using rotamer libraries

Energy minimization is used to relieve
structural errors

Molecular dynamics can be used to explore
possible conformations for mobile loops
Models need to be checked for accuracy
How far can homology models be trusted?

13.5 Automated Homology Modeling
The program MODELLER models by satisfying
protein structure constraints
COMPOSER uses fragment-based modeling to
automatically generate a model
Automated methods available on the Web for
comparative modeling
Assessment of structure prediction

13.6 Homology Modeling of PI3 Kinase p110¢
Swiss-Pdb Viewer can be used for manual
or semi-manual modeling
Alignment, core modeling, and side-chain
modeling are carried out all in one
The loops are modeled from a database of
possible structures
Energy minimization and quality inspection
can be carried out within Swiss-Pdb Viewer
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MolIDE is a downloadable semi-automatic
modeling package

Automated modeling on the Web illustrated with
pll0a kinase

Modeling a functionally related but sequentialty
dissimilar protein: mTOR

Generating a multidomain three-dimensional
structure from sequence
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Chapter 14 Analyzing Structure-Function
Relationships
14.1 Functional Conservation
Functional regions are usually structurally
conserved
Similar biochemical function can be found
in proteins with different folds

Fold libraries identify structurally similar proteins
regardless of function

14.2 Structure Comparison Methods
Finding domains in proteins aids structure
comparison
Structural comparisons can reveal conserved
functional elements not discernible from a
sequernce CoOMmparison
The CE method builds up a structural alignment
from pairs of aligned protein segments
The Vector Alignment Search Tool (VAST) aligns
secondary structural elements
DALI identifies structure superposition without
maintaining segment order
FATCAT introduces rotations between rigid
segments

14.3 Finding Binding Sites
Highly conserved, strongly charged, or hydrophobic
surface areas may indicate interaction sites
Searching for protein—protein interactions
using surface properties
Surface calculations highlight clefts or holes
in a protein that may serve as binding sites
Looking at residue conservation can identify
binding sites

14.4 Docking Methods and Prograimns
Simple docking procedures can be used when
the structure of a homologous protein bound
to a ligand analog is known
Specialized docking programs will automatically
dock a ligand to a structure
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Scoring functions are used to identify the most
likely docked ligand

The DOCK program is a semirigid-body method
that analyzes shape and chemical
complementarity of ligand and binding site
Fragment docking identifies potential substrates
by predicting types of atoms and functional
groups in the binding area

GOLD is a flexible docking program, which
utilizes a genetic algorithm

The water molecules in binding sites should also
be considered

Summary
Further Reading

Part 7 Cells and Organisms

Chapter 15 Proteome and Gene Expression Analysis
15.1 Analysis of Large-scale Gene Expression

The expression of large numbers of different
genes can be measured simultaneously by DNA
microarrays

(Gene expression microarrays are mainly used
to detect differences in gene expression in
different conditions

Serial analysis of gene expression (SAGE) is also
used to study global patterns of gene expression
Digital differential display uses bioinformatics
and statistics to detect differential gene
expression in different tissues

Facilitating the integration of data from different
places and experiments

The simplest method of analyzing gene expression
microarray data is hierarchical cluster analysis
Techniques based on self-organizing maps

can be used for analyzing microarray data
Self-organizing tree algorithms (SOTAs) cluster
from the top down by successive subdivision

of clusters

Clustered gene expression data can be used as

a tool for further research

15.2 Analysis of Large-scale Protein Expression

XK |

Two-dimensional gel electrophoresis is a method
for separating the individual proteins in a cell
Measuring the expression levels shown in 2D gels
Differences in protein expression levels between
different samples can be detected by 2D gels
Clustering methods are used to identify protein
spots with similar expression patterns

Principal component analysis (PCA) is an
alternative to clustering for analyzing microarray
and 2D gel data
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The changes in a set of protein spots can be
tracked over a number of different samples
Databases and online tools are available to aid
the interpretation of 2D gel data

Protein microarrays allow the simultaneous
detection of the presence or activity of large
numbers of different proteins

Mass spectrometry can be used to identify the
proteins separated and purified by 2D gel
electrophoresis or other means
Protein-identification programs for mass
spectrometry are freely available on the Web
Mass spectrometry can be used to measure
protein concentration

Summary
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Chapter 16 Clustering Methods and Statistics
16.1 Expression Data Require Preparation Prior

to Analysis

Data normalization is designed to remove
systematic experimental errors

Expression levels are often analyzed as ratios

and are usually transformed by taking logarithms
Sometimes further normalization is useful after
the data transformation

Principal component analysis is a method for
combining the properties of an object

16.2 Cluster Analysis Requires Distances to be Defined

Between all Data Points

Euclidean distance is the measure used in
everyday life

The Pearson correlation coefficient measures
distance in terms of the shape of the expression
response

The Mahalanobis distance takes account of the
variation and correlation of expression responses

16.3 Clustering Methods Identify Similar and Distinct

Expression Patterns

Hierarchical clustering produces a related set of
alternative partitions of the data

k-means clustering groups data into several
clusters but does not determine a relationship
between clusters

Self-organizing maps (SOMs) use neural network
methods to cluster data into a predetermined
number of clusters

Evolutionary clustering aigorithms use selection,

recombination, and mutation to find the best
possible solution to a problem
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The self-organizing tree algorithm (SOTA) 17.4 Storing and Running System Models 689
determines the number of clusters required 648 Specialized programs make simulating
Biclustering identifies a subset of similar systems easier 691
expression level patterns occurring in a subset Standardized system descriptions aid their
of the samples 649 storage and reuse 692
The validity of clusters is determined by
independent methods 650 Summary 692
Further Reading 693
16.4 Statistical Analysis can Quantify the Significance
of Observed Differential Expression 651
i-tests can be used to estimate the significance APPENDICES Backgrou nd Theory
of the dlfferen'ce between two expres.sion le‘vels 654 Appendix A: Probability, Information, and
Nonparametric tests are used to av-01d making Bayesian Analysis
assumptions about the data sampling 656 .
. . . . . . Probability Theory, Entropy, and Information 695
Multiple testing of differential expression requires Mutuallv exclusive events 695
special techniques to control error rates 657 Y
Occurrence of two events 696
16.5 Gene and Protein Expression Data Can be Used (?ccurrence.of two random variables 696
to Classify Samples 659 Bayestan A)nalySIS 697
Many alternative methods have been proposed :Bayes theorem 697
that can classify samples 660 Inference of parameter values 698
Support vector machines are another form of ,
suggrvised learning algorithms that can produce Further Reading 699
classifiers 661
Appendix B: Molecular Energy Functions
Summary 662 Force Fields for Calculating Intra- and Intermelecular
Further Reading 664 Interaction Energies 701
Bonding terms 702
Chapter 17 Systems Biology Nonhonding terms 704
17.1 What is a System? 669 Potentials _u.sed in Threading 706
A system is more than the sum of its parts 669 Potent%als of mean f?rce 706
A biological system is a living network 670 Potential terms relating to solvent effects 707
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There are three possible approaches to Full Search Methods 710
constructing a model 674 Dynamic programming and branch-and-bound 710
Kinetic models are not the only way in Local Optimization 710
systems biology 678 The downhill simplex method 711
The steepest descent method 711
17.2 Structure of the Model 679 The conjugate gradient method 714
Control circuits are an essential part of any Methods using second derivatives 714
biological system 680 Thermodynamic Simulation and Global Optimization 715
The interactions in networks can be represented Monte Carlo and genetic algorithms 716
as simple differential equations 680 Molecular dynamics 718
Simulated annealing 719
17.3 Robustness of Biological Systems 683 Summary 719
Robustness is a distinct feature of complexity
in biology 684 Further Reading 719
Modularity plays an important part in robustness 685
Redundancy in the system can provide robustness 686 List of Symbols 721
Living systems can switch from one state to Glossary 734
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xxili



