

Fundamentals and applications

Way Kuo V. Rajendra Prasad Frank A. Tillman, and Ching-Lai Hwang

Contents

List	t of figures	<i>page</i> xi
List	t of tables	xiii
Pre	face	xvii
Ack	nowledgments	xxi
Int	roduction to reliability systems	1
Bac	kground	1
Gei	neral description of the problem	1
Sys	tem hardware, human factors, software, and environment	2
1.3	1 Hardware reliability	3
1.3	.2 Human factors	3
1.3	.3 Software	5
1.3	.4 Physical and economic constraints	5
Sys	stem effectiveness models	6
1.4	.1 Attributes of system effectiveness	7
1.4	.2 Human factors in system effectiveness	8
1.4	.3 Mission effectiveness	10
Fui	ndamental system configurations and reliability functions	10
1.5	.1 Series configuration	10
1.5	.2 Parallel configuration	11
1.5	.3 Series-parallel configuration	13
1.5	.4 Parallel-series configuration	13
1.5	.5 Hierarchical series-parallel systems	15
1.5	.6 k-out-of-n systems	16
1.5	.7 Complex configuration	17
1.5	.8 Coherent systems	20
1.5	.9 Cold standby redundancy in a single-component system	23
1.5	.10 Redundancy with imperfect switching system	25
1.5	.11 Multi-cause failure model	28
Ex	ercises	29

Anaiy	rsis and classification of reliability optimization models	33
Introd	uction and notation	33
Optim	ization models	34
_	m reduction	39
Classi	fication of system-reliability optimization	41
	t developments in reliability optimization	46
2.5.1	Heuristics for redundancy allocation	47
2.5.2	Metaheuristic algorithms for redundancy allocation	48
2.5.3	Exact methods for redundancy allocation	54
	Heuristics for reliability-redundancy allocation	56
2.5.5	Multiple objective optimization in reliability systems	57
2.5.6	Optimal assignment of interchangeable components in coherent systems	59
2.5.7	Effort function optimization	61
	cations	62
Discus		62
Exerci	ises	64
Keuu	ndancy allocation by heuristic methods	66
	uction	66
	tions and examples	67
	stic methods with 1-neighborhood solutions	71
3.3.1	The Misra, Sharma, and Venkateswaran method	72
3.3.2	The Gopal, Aggarwal, and Gupta method	74
3.3.3	The Nakagawa-Nakashima method	76
3.3.4	An extension of the NN method for complex systems	79
3.3.5	The Dinghua method	80
	heuristic methods	83
3.4.1	The Kohda–Inoue method	83
3.4.2	The Kim-Yum method	83
3.4.3	Ushakov's heuristic method	87
3.4.4	The Misra method	88
Discu		89
Exerc	ises	90
Redu	indancy allocation by dynamic programming	92
	luction	92
	asic dynamic programming approach	95
The D	P approach using Lagrange multipliers	101

vii Contents

7	The DP approach using dominating allocations	. 10
T	he DP approach for hierarchical series-parallel systems	11
Г	Discussion	11
E	Exercises	11
R	tedundancy allocation by discrete optimization methods	12
I	ntroduction	12
1	The 0–1 linear programming formulation	12
E	Branch-and-bound methods	12
5	.3.1 Redundancy allocation in a series system	12
5	.3.2 Redundancy allocation in a complex system	13
A	A partial enumeration method	13
T	The lexicographic method	13
Ι	Discussion	14
E	Exercises	14
F	Reliability optimization by nonlinear programming	14
Ι	ntroduction	14
1	he Lagrangian method	14
F	Penalization methods	15
6	5.3.1 The barrier method	15
6	5.3.2 The penalty method	15
6	5.3.3 The mixed penalty function method	15
6	5.3.4 The penalization method with Lagrange multipliers	15
Ι	Discussion	16
E	Exercises	16
1	Metaheuristic algorithms for optimization in reliability systems	16
I	introduction	10
(Genetic algorithms	16
7	7.2.1 Genetic algorithms for system-reliability optimization	17
7	The simulated annealing method	18
7	7.3.1 Reliability optimization by simulated annealing	19
7	7.3.2 The nonequilibrium simulated annealing algorithm	19
7	The tabu search method	19
7	7.4.1 Reliability optimization by tabu search	19
I	Discussion	20
I	∃xercises	20

	7.

Relial	pility-redundancy allocation	208
Introdu	action	208
The me	ethod of Tillman, Hwang, and Kuo	211
	ethod of Gopal, Aggarwal, and Gupta	211
	ethod of Kuo, Lin, Xu, and Zhang	215
The m	ethod of Xu, Kuo, and Lin	216
The su	rrogate constraints method	219
8.6.1	The DP approach to solve surrogate problem S(u)	224
Evolut	ionary algorithms	226
8.7.1	The genetic algorithm for reliability-redundancy optimization	227
8.7.2	The evolutionary algorithm for reliability-redundancy optimization	228
Discus	sion	232
Exerci	ses	233
Comp	onent assignment in reliability systems	236
Introdu	action	236
Optim	al assignment of components in series-parallel systems	237
9.2.1	Optimal allocation of components in series-parallel systems	238
9.2.2	A heuristic approach for optimal assignment of components	246
9.2.3	Optimal assignment for two path sets: bicriteria approach	249
Optim	al assignment of components in parallel-series systems	251
9.3.1	Optimal allocation of components in parallel-series systems	252
9.3.2	Optimal assignment in two cut sets: bicriterion approach	257
	onent assignment in coherent systems	262
9.4.1	Optimal component assignment through pairwise interchanges	263
9.4.2	The Malon greedy algorithm	265
9.4.3	The greedy algorithm of Lin and Kuo	265
9.4.4	Invariant optimal assignments	269
Discus		271
Exerci		272
Relia	bility systems with multiple objectives	275
Introd	uction	275
	fication of multiple objective decision making	278
	M solutions	279
	ple objective reliability problems	282
-	oility-redundancy allocation with multiple objectives	283
	Problem description	283
	The multiple objective optimization approach	287

ntents

Fuzzy multiple objective optimization	
Discussion	
Exercises	
Other methods for system-reliability optimization	
Introduction	
Optimization of effort function	
11.2.1 Albert method for a series system	
11.2.2 The Dale-Winterbottom method for a general coherent system	
Discussion	
Exercises	
Burn-in optimization under limited capacity	
Introduction	
Statement of the problem	
12.2.1 Objective function and reliability constraints	
12.2.2 Burn-in capacity	
12.2.3 Problem formulation	
Optimization and the decision tree	
Application to an electronic product	
12.4.1 Assumptions	
12.4.2 Unconstrained minimization	
12.4.3 System reliability	
12.4.4 Constrained minimization	
Discussion	
Exercises	
Case study on design for software reliability optimization	
Introduction	
The basic execution time model	
Resource usage	
Reliability modeling	
13.4.1 The two-component model	
13.4.2 The three-component model	
Formulation of the software reliability optimization problem	
13.5.1 A pure software system	
13.5.2 A hardware and software mixed system	

	C	
X	Contents	

Discussion	
Exercises	
Case study on an optimal scheduled-maintenance policy	
Introduction	
Criteria functions	
The strictest selection	
The lexicographic method	
The Waltz lexicographic method	
SEMOPS: an interactive method	
Discussion	
Case studies on reliability optimization Case study on maintenance for mission effectiveness	
Case studies on reliability optimization Case study on maintenance for mission effectiveness Case study on PWR coolant system Case study on design of a gas pipe line	
Case study on maintenance for mission effectiveness Case study on PWR coolant system	
Case study on maintenance for mission effectiveness Case study on PWR coolant system Case study on design of a gas pipe line	
Case study on maintenance for mission effectiveness Case study on PWR coolant system Case study on design of a gas pipe line Exercises	
Case study on maintenance for mission effectiveness Case study on PWR coolant system Case study on design of a gas pipe line Exercises Appendices Appendix 1 Outline of dynamic programming Appendix 2 The Hooke–Jeeves (H–J) algorithm	
Case study on maintenance for mission effectiveness Case study on PWR coolant system Case study on design of a gas pipe line Exercises Appendices Appendix 1 Outline of dynamic programming	
Case study on maintenance for mission effectiveness Case study on PWR coolant system Case study on design of a gas pipe line Exercises Appendices Appendix 1 Outline of dynamic programming Appendix 2 The Hooke–Jeeves (H–J) algorithm	
Case study on maintenance for mission effectiveness Case study on PWR coolant system Case study on design of a gas pipe line Exercises Appendices Appendix 1 Outline of dynamic programming Appendix 2 The Hooke–Jeeves (H–J) algorithm Appendix 3 Derivation of polytope U^{k+1} from U^k	