# AN INTRODUCTION TO MANAGEMENT SCIENCE

QUANTITATIVE APPROACHES
TO DECISION MAKING

Twelfth Edition

Anderson / Sweeney / Williams / Martin

Not for Sale in the

#### Preface xvii About the Authors xxv

# Chapter 1 Introduction 1

| 1.1 | Problem | Solving | and | Decision | Making | 3 |
|-----|---------|---------|-----|----------|--------|---|
|-----|---------|---------|-----|----------|--------|---|

#### 1.2 Quantitative Analysis and Decision Making 4

#### 1.3 Quantitative Analysis 6

Model Development 7

Data Preparation 10

Model Solution 11

Report Generation 12

A Note Regarding Implementation 12

#### 1.4 Models of Cost, Revenue, and Profit 14

Cost and Volume Models 14

Revenue and Volume Models 15

Profit and Volume Models 15

Breakeven Analysis 16

#### 1.5 Management Science Techniques 16

Methods Used Most Frequently 18

Summary 19

Glossary 19

Problems 20

Case Problem Scheduling a Golf League 24

Appendix 1.1 The Management Scientist Software 24

Appendix 1.2 Using Excel for Breakeven Analysis 27

# Chapter 2 An Introduction to Linear Programming 31

#### 2.1 A Simple Maximization Problem 33

Problem Formulation 34

Mathematical Statement of the Par, Inc., Problem 36

#### 2.2 Graphical Solution Procedure 38

A Note on Graphing Lines 47

Summary of the Graphical Solution Procedure for Maximization Problems 49 Slack Variables 50

#### 2.3 Extreme Points and the Optimal Solution 51

#### 2.4 Computer Solution of the Par, Inc., Problem 53

Interpretation of Computer Output 54

#### 2.5 A Simple Minimization Problem 56

Summary of the Graphical Solution Procedure for Minimization Problems 58 Surplus Variables 59

Computer Solution of the M&D Chemicals Problem 60

#### 2.6 Special Cases 61

Alternative Optimal Solutions 61

Infeasibility 63

Unbounded 64

#### 2.7 General Linear Programming Notation 66

Summary 67

Glossary 69

Problems 70

Case Problem 1 Workload Balancing 83

Case Problem 2 Production Strategy 84

Case Problem 3 Hart Venture Capital 85

Appendix 2.1 Solving Linear Programs with the Management Scientist 86

Appendix 2.2 Solving Linear Programs with LINDO 87

Appendix 2.3 Solving Linear Programs with Excel 88

# Chapter 3 Linear Programming: Sensitivity Analysis and Interpretation of Solution 94

#### 3.1 Introduction to Sensitivity Analysis 96

### 3.2 Graphical Sensitivity Analysis 97

Objective Function Coefficients 97

Right-Hand Sides 102

#### 3.3 Sensitivity Analysis: Computer Solution 105

Interpretation of Computer Output 105

Simultaneous Changes 108

Interpretation of Computer Output—A Second Example 110

Cautionary Note on the Interpretation of Dual Prices 112

#### 3.4 More than Two Decision Variables 113

The Modified Par, Inc., Problem 113

The Bluegrass Farms Problem 118

Formulation of the Bluegrass Farms Problem 119

Computer Solution and Interpretation for the Bluegrass Farms Problem 120

#### 3.5 The Electronic Communications Problem 122

Problem Formulation 123

Computer Solution and Interpretation 125

Summary 128

Glossary 129

Problems 129

Case Problem 1 Product Mix 147

Case Problem 2 Investment Strategy 148

Case Problem 3 Truck Leasing Strategy 149

Appendix 3.1 Sensitivity Analysis with Excel 150

# **Chapter 4** Linear Programming Applications 153

#### 4.1 Marketing Applications 154

Media Selection 155

Marketing Research 158

Contents ix

#### 4.2 Financial Applications 161

Portfolio Selection 161

Financial Planning 164

#### 4.3 Production Management Applications 168

A Make-or-Buy Decision 169

Production Scheduling 173

Workforce Assignment 180

#### 4.4 Blending Problems 183

#### 4.5 Data Envelopment Analysis 189

Evaluating the Performance of Hospitals 190

Overview of the DEA Approach 190

DEA Linear Programming Model 191

Summary of the DEA Approach 196

#### 4.6 Revenue Management 197

Summary 203

Glossary 203

Problems 204

Case Problem 1 Planning an Advertising Campaign 221

Case Problem 2 Phoenix Computer 222

Case Problem 3 Textile Mill Scheduling 223

Case Problem 4 Workforce Scheduling 224

Case Problem 5 Cinergy Coal Allocation 226

Appendix 4.1 Excel Solution of Hewlitt Corporation Financial Planning Problem 228

# Chapter 5 Linear Programming: The Simplex Method 233

#### 5.1 An Algebraic Overview of the Simplex Method 234

Algebraic Properties of the Simplex Method 235

Determining a Basic Solution 235

Basic Feasible Solution 236

- 5.2 Tableau Form 237
- 5.3 Setting Up the Initial Simplex Tableau 239
- 5.4 Improving the Solution 242
- 5.5 Calculating the Next Tableau 244

Interpreting the Results of an Iteration 247

Moving Toward a Better Solution 247

Interpreting the Optimal Solution 250

Summary of the Simplex Method 251

#### 5.6 Tableau Form: The General Case 252

Greater-Than-or-Equal-to Constraints 252

**Equality Constraints 256** 

Eliminating Negative Right-Hand-Side Values 257

Summary of the Steps to Create Tableau Form 258

#### 5.7 Solving a Minimization Problem 259

#### 5.8 Special Cases 261

Infeasibility 261

Unboundedness 263

Alternative Optimal Solutions 264

Degeneracy 265

Summary 267 Glossary 268 Problems 269

# Chapter 6 Simplex-Based Sensitivity Analysis and Duality 278

6.1 Sensitivity Analysis with the Simplex Tableau 279

Objective Function Coefficients 279 Right-Hand-Side Values 283

Simultaneous Changes 290

6.2 Duality 291

Economic Interpretation of the Dual Variables 293 Using the Dual to Identify the Primal Solution 295

Finding the Dual of Any Primal Problem 295

Summary 297 Glossary 298 Problems 298

# Chapter 7 Transportation, Assignment, and Transshipment Problems 306

7.1 Transportation Problem: The Network Model and a Linear Programming Formulation 307

Problem Variations 310

A General Linear Programming Model of the Transportation Problem 313

7.2 Assignment Problem: The Network Model and a Linear Programming Formulation 314

Problem Variations 318

A General Linear Programming Model of the Assignment Problem 318 Multiple Assignments 318

7.3 Transshipment Problem: The Network Model and a Linear Programming Formulation 320

Problem Variations 325

A General Linear Programming Model of the Transshipment Problem 326

- 7.4 A Production and Inventory Application 327
- 7.5 Transportation Simplex Method: A Special-Purpose Solution Procedure (Optional) 330

Phase I: Finding an Initial Feasible Solution 332

Phase II: Iterating to the Optimal Solution 335

Summary of the Transportation Simplex Method 344

Problem Variations 346

7.6 Assignment Problem: A Special-Purpose Solution Procedure (Optional) 347

Finding the Minimum Number of Lines 350

Problem Variations 350

Summary 353

Glossary 354

Problems 355

Case Problem Distribution System Design 372

Appendix 7.1 Excel Solution of Transportation, Assignment, and

**Transshipment Problems 374** 

# Chapter 8 Integer Linear Programming 380

#### 8.1 Types of Integer Linear Programming Models 382

#### 8.2 Graphical and Computer Solutions for an All-Integer Linear Program 384

Graphical Solution of the LP Relaxation 385

Rounding to Obtain an Integer Solution 386

Graphical Solution of the All-Integer Problem 386

Using the LP Relaxation to Establish Bounds 386

Computer Solution 388

#### 8.3 Applications Involving 0-1 Variables 388

Capital Budgeting 389

Fixed Cost 390

Distribution System Design 392

Bank Location 396

Product Design and Market Share Optimization 400

#### 8.4 Modeling Flexibility Provided by 0-1 Integer Variables 405

Multiple-Choice and Mutually Exclusive Constraints 405

k Out of n Alternatives Constraint 406

Conditional and Corequisite Constraints 406

A Cautionary Note About Sensitivity Analysis 408

Summary 408

Glossary 409

Problems 410

Case Problem 1 Textbook Publishing 421

Case Problem 2 Yeager National Bank 422

Case Problem 3 Production Scheduling with Changeover Costs 423

Appendix 8.1 Excel Solution of Integer Linear Programs 424

# Chapter 9 Network Models 428

9.1 Shortest-Route Problem 429

A Shortest-Route Algorithm 430

9.2 Minimal Spanning Tree Problem 438

A Minimal Spanning Tree Algorithm 439

9.3 Maximal Flow Problem 442

Summary 446

Glossary 446

Problems 446

Case Problem Ambulance Routing 455

# Chapter 10 Project Scheduling: PERT/CPM 457

#### 10.1 Project Scheduling with Known Activity Times 458

The Concept of a Critical Path 459

Determining the Critical Path 461

Contributions of PERT/CPM 465

Summary of the PERT/CPM Critical Path Procedure 466

#### 10.2 Project Scheduling with Uncertain Activity Times 468

The Daugherty Porta-Vac Project 468

**Uncertain Activity Times 469** 

The Critical Path 471

Variability in Project Completion Time 474

#### 10.3 Considering Time-Cost Trade-Offs 476

Crashing Activity Times 477

Linear Programming Model for Crashing 479

Summary 482

Glossary 482

Problems 483

Case Problem R. C. Coleman 493

# **Chapter 11** Inventory Models 495

#### 11.1 Economic Order Quantity (EOQ) Model 496

The How-Much-to-Order Decision 501

The When-to-Order Decision 502

Sensitivity Analysis for the EOQ Model 503

Excel Solution of the EOQ Model 504

Summary of the EOQ Model Assumptions 505

#### 11.2 Economic Production Lot Size Model 506

Total Cost Model 507

Economic Production Lot Size 509

- 11.3 Inventory Model with Planned Shortages 509
- 11.4 Quantity Discounts for the EOQ Model 514

#### 11.5 Single-Period Inventory Model with Probabilistic Demand 516

Johnson Shoe Company 517

Nationwide Car Rental 521

#### 11.6 Order-Quantity, Reorder Point Model with Probabilistic Demand 522

The How-Much-to-Order Decision 523

The When-to-Order Decision 524

#### 11.7 Periodic Review Model with Probabilistic Demand 526

More Complex Periodic Review Models 529

Summary 530

Glossary 531

Problems 532

Case Problem 1 Wagner Fabricating Company 540

Case Problem 2 River City Fire Department 541

Appendix 11.1 Development of the Optimal Order Quantity (Q) Formula for the EOQ Model 542

Appendix 11.2 Development of the Optimal Lot Size  $(Q^*)$  Formula for the Production Lot Size Model 543

# Chapter 12 Waiting Line Models 544

#### 12.1 Structure of a Waiting Line System 546

Single-Channel Waiting Line 546

Distribution of Arrivals 546

Distribution of Service Times 548

Queue Discipline 549

Steady-State Operation 550

# 12.2 Single-Channel Waiting Line Model with Poisson Arrivals and Exponential Service Times 550

Operating Characteristics 550

Operating Characteristics for the Burger Dome Problem 551

Managers' Use of Waiting Line Models 552

Improving the Waiting Line Operation 552

Excel Solution of Waiting Line Model 554

# 12.3 Multiple-Channel Waiting Line Model with Poisson Arrivals and Exponential Service Times 555

Operating Characteristics 555

Operating Characteristics for the Burger Dome Problem 557

- 12.4 Some General Relationships for Waiting Line Models 560
- 12.5 Economic Analysis of Waiting Lines 561
- 12.6 Other Waiting Line Models 563

#### 12.7 Single-Channel Waiting Line Model with Poisson Arrivals and Arbitrary Service Times 564

Operating Characteristics for the M/G/1 Model 564

Constant Service Times 566

# 12.8 Multiple-Channel Model with Poisson Arrivals, Arbitrary Service Times, and No Waiting Line 566

Operating Characteristics for the *M/G/k* Model with Blocked Customers Cleared 567

#### 12.9 Waiting Line Models with Finite Calling Populations 569

Operating Characteristics for the *M/M/*1 Model with a Finite Calling Population 570

Summary 573

Glossary 574

Problems 574

Case Problem 1 Regional Airlines 582

Case Problem 2 Office Equipment, Inc. 583

# Chapter 13 Simulation 585

#### 13.1 Risk Analysis 588

PortaCom Project 588

What-If Analysis 588

Simulation 590

Simulation of the PortaCom Problem 598

#### 13.2 Inventory Simulation 601

Simulation of the Butler Inventory Problem 604

#### 13.3 Waiting Line Simulation 607

Hammondsport Savings Bank ATM Waiting Line 607

Customer Arrival Times 607

Customer Service Times 609

Simulation Model 609

Simulation of the Hammondsport Savings Bank ATM Problem 613

Simulation with Two ATMs 614

Simulation Results with Two ATMs 616

#### 13.4 Other Simulation Issues 618

Computer Implementation 618

Verification and Validation 619

Advantages and Disadvantages of Using Simulation 619

Summary 620

Glossary 621

Problems 622

Case Problem 1 Tri-State Corporation 629

Case Problem 2 Harbor Dunes Golf Course 631

Case Problem 3 County Beverage Drive-Thru 632

Appendix 13.1 Simulation with Excel 634

Appendix 13.2 Simulation of the PortaCom Problem Using Crystal Ball 640

# Chapter 14 Decision Analysis 645

#### 14.1 Problem Formulation 647

Influence Diagrams 648

Payoff Tables 648

Decision Trees 649

#### 14.2 Decision Making Without Probabilities 650

Optimistic Approach 650

Conservative Approach 650

Minimax Regret Approach 651

#### 14.3 Decision Making with Probabilities 653

Expected Value of Perfect Information 655

#### 14.4 Risk Analysis and Sensitivity Analysis 657

Risk Analysis 658

Sensitivity Analysis 658

#### 14.5 Decision Analysis with Sample Information 663

Influence Diagram 663

Decision Tree 663

Decision Strategy 666

Risk Profile 670

Expected Value of Sample Information 673

Efficiency of Sample Information 673

#### 14.6 Computing Branch Probabilities 674

#### 14.7 Utility and Decision Making 677

The Meaning of Utility 678

Developing Utilities for Payoffs 679

Expected Utility Approach 682

Summary 683

Glossary 685

Problems 687

Case Problem 1 Property Purchase Strategy 703

Case Problem 2 Lawsuit Defense Strategy 705

Appendix 14.1 Decision Analysis with TreePlan 706

# Chapter 15 Multicriteria Decisions 712

#### 15.1 Goal Programming: Formulation and Graphical Solution 713

Developing the Constraints and the Goal Equations 714

Developing an Objective Function with Preemptive Priorities 716 Graphical Solution Procedure 717 Goal Programming Model 720

#### 15.2 Goal Programming: Solving More Complex Problems 721

Suncoast Office Supplies Problem 721 Formulating the Goal Equations 722 Formulating the Objective Function 723 Computer Solution 724

#### 15.3 Scoring Models 727

#### 15.4 Analytic Hierarchy Process 732

Developing the Hierarchy 733

#### 15.5 Establishing Priorities Using AHP 734

Pairwise Comparisons 734
Pairwise Comparison Matrix 736
Synthesization 737
Consistency 738

Other Pairwise Comparisons for the Car Selection Problem 740

#### 15.6 Using AHP to Develop an Overall Priority Ranking 742

Summary 743

Glossary 744

Problems 745

Case Problem EZ Trailers, Inc. 754

Appendix 15.1 Scoring Models with Excel 755

# Chapter 16 Forecasting 758

#### 16.1 Components of a Time Series 760

Trend Component 760 Cyclical Component 760 Seasonal Component 761 Irregular Component 762

#### 16.2 Smoothing Methods 762

Moving Averages 763 Weighted Moving Averages 766 Exponential Smoothing 766

#### 16.3 Trend Projection 771

#### 16.4 Trend and Seasonal Components 774

Multiplicative Model 775

Calculating the Seasonal Indexes 777

Deseasonalizing the Time Series 780

Using Deseasonalized Time Series to Identify Trend 780

Seasonal Adjustments 783

Models Based on Monthly Data 783

Cyclical Component 784

#### 16.5 Regression Analysis 784

Using Regression Analysis as a Causal Forecasting Method 785 Using Regression Analysis with Time Series Data 790

#### 16.6 Qualitative Approaches 792

Delphi Method 792

Expert Judgment 792

Scenario Writing 792 Intuitive Approaches 792

Summary 793

Glossary 793

Problems 794

Case Problem 1 Forecasting Sales 804

Case Problem 2 Forecasting Lost Sales 805

Appendix 16.1 Using Excel for Forecasting 806

# Chapter 17 Markov Processes 808

- 17.1 Market Share Analysis 810
- 17.2 Accounts Receivable Analysis 818

Fundamental Matrix and Associated Calculations 819 Establishing the Allowance for Doubtful Accounts 821

Summary 822

Glossary 823

Problems 824

Appendix 17.1 Matrix Notation and Operations 828

# Chapter 18 Dynamic Programming 832

- 18.1 A Shortest-Route Problem 833
- 18.2 Dynamic Programming Notation 837
- 18.3 The Knapsack Problem 841
- 18.4 A Production and Inventory Control Problem 847

Summary 851

Glossary 852

Problems 853

Case Problem Process Design 857

# Appendixes 859

Appendix A Areas for the Standard Normal Distribution 860

**Appendix B** Values of  $e^{-\lambda}$  861

**Appendix C** References and Bibliography 862

**Appendix D** Self-Test Solutions and Answers to Even-Numbered Problems 864

Index 897