Proteomics

edited by C. David O'Connor and B. David Hames

Contents

Co	ntributors	Х
Pre	eface	xiii
Abl	breviations	xvi
Col	lor section	xix
	apter 1. Sample preparation and subcellular fractionation	
	proaches: purification of membranes and their microdomains	
	r mass spectrometry analysis	
	n Li, Phil Oh, and Jan E. Schnitzer	1
1. 2.	Introduction Matheds and approaches	1 2
۷.	Methods and approaches	
	2.1 Isolation of plasma membrane and its microdomains 2.2 Principles of the technology	2
	2.2 Principles of the technology2.3 Methodology	3
3.	· · · · · · · · · · · · · · · · · · ·	3 13
ა. 4.	Identification of proteins from purified membranes by liquid	13
٦.	chromatography tandem MS	14
	4.1 Mapping of the proteome of the rat lung microvascular	14
	endothelial cell surface by multi-dimensional protein	
	identification technology	14
	4.2 Target proteins identified by two-dimensional gel	14
	electrophoresis combined with LC-MS/MS	14
5.	References	15
υ.	neterences	13
Ch	apter 2. An isotope-coding strategy for quantitative proteomics	
	an Chen	
1.	•	17
2.		18
	2.1 Amino acid-coded mass tagging	18
	2.2 High-throughput MS for AACT-based quantitative proteomic	
	analysis	23
	•	

	2.3	AACT/epitope dual-tagging strategy for pathway scale profiling of protein—protein interactions regulating gene expression Magning 'real time' phosphorulation sites of signal proteins	27
	2.4	Mapping 'real-time' phosphorylation sites of signal proteins involved in signal transduction	29
3.	Con	clusions	30
		ibleshooting	30
5.		erences	31
	•	7 3. Gel-based approaches	
		l. Cordwell, Ben Crossett, and Melanie Y. White Oduction	22
			33
2.		hods and approaches	34
	2.1	Sample preparation Protein pre-fractionation	34 36
	2.3	Isoelectric focusing	30 41
	2.3	Difference in-gel electrophoresis	42
	2.5	Reduction, alkylation, and detergent exchange (equilibration)	45
	2.6	SDS-PAGE	46
	2.7	Staining 2DE gels	47
3.		ibleshooting	53
J.	3.1	Interfering molecules during IEF	53
	3.2	'Difficult' proteins in 2DE	54
	3.3	Alternatives to 2DE gel-based approaches	56
4.	-	clusions	56
5.		erences	57
	•	4. Peptide sorting by reverse-phase diagonal chromatography	
		vaert and Joël Vandekerckhove	
1.		oduction	61
2.		hods and approaches	62
	2.1	Principles of combined fractional diagonal chromatography	62
	2.2	General applications of COFRADIC for gel-free proteomics	65
_	2.3	Methodology	66
		ubleshooting	79
4.	кет	erences	81
Ch	aptei	r 5. Mass spectrometry strategies for protein identification	
	•	R. Goodlett and Garry L. Corthals	
1.		oduction	83
2.	San	nple preparation	85
	2.1	Digestion	85
	2.2	Sample clean-up prior to LC-MS	87
3.	MS	analysis	89

	3.1	Microcapillary LC-MS/MS	89
	3.2	Data-dependent MS/MS allowing automated ion selection	90
	3.3	Iterative gas-phase fractionation increasing proteome coverage	93
4.		abase searching	94
••	4.1	Matching peptide fragmentation patterns to amino acid	34
	т. 1	sequence	0.5
5.	Can	cluding remarks	95
5. 6.		erences	97
υ.	nere	rences	98
Ch	apter	6. Desorption electrospray ionization: proteomics studies by a	
		that bridges ESI and MALDI	
Zo	ltán	Takáts, Justin M. Wiseman, Demian R. Ifa, and R. Graham Cooks	
1.		oduction	99
	1.1	DESI instrumentation	100
	1.2	lon formation	102
2.	Met	hods and approaches	104
	2.1	Analysis of intact proteins	105
		Analysis of tryptic digests	106
		Coupling DESI with separation methods	110
		Reactive DESI	112
		In situ proteomics	
3.		bleshooting	113
э. 4.		rences	116
4.	ncie	Tences	117
Ch	apter	7. Analysis of cellular protein complexes by affinity	
pu	rifica	tion and mass spectrometry	
Tili	nann	Bürckstümmer and Keiryn L. Bennett	
1.	Intro	oduction	119
2.	Met	hods and approaches	120
	2.1	TAP compared with other experimental approaches	120
	2.2	Methodology	121
3.	Trou	bleshooting	132
4.		rences	133
		. Checo	133
_			
		8. Clinical proteomic profiling and disease signatures	
		nde E. Banks, David A. Cairns, David N. Perkins, and	
Jer.	inifer	H. Barrett	
1.		oduction	135
2.	Met	nods and approaches	137
	2.1	Principles of MALDI and SELDI	138
	2.2	Choice of sample type	139
	2.3	Study design, pre-analytical and analytical issues	140
	2.4	Data processing	141

2.5 Data analysis	142
2.6 Validation and translation	143
2.7 Methodology	144
Troubleshooting	157
References	157
apter 9. Characterization of post-translational modifications:	
·	
Introduction	161
Methods and approaches	163
	163
	165
	173
· · · · · · · · · · · · · · · · · · ·	176
,	178
-	179
napter 10. Protein microarray technologies	
•	
Introduction	183
Protein microarray fabrication	184
2.1 Surface materials	184
2.2 Protein printing	185
•	186
• •	187
	190
	191
·	
·	192
	194
	195
	195
2	196
, .	196
	198
•	198
	198
	199
	199
· · · · · · · · · · · · · · · · · · ·	200
Outlook	202
	2.6 Validation and translation 2.7 Methodology Troubleshooting References apter 9. Characterization of post-translational modifications: dertaking the phosphoproteome Andy Tao, Bernd Bodenmiller, and Ruedi Aebersold Introduction Methods and approaches 2.1 Enrichment of phosphoproteins 2.2 Enrichment of phosphopeptides 2.3 MS data acquisition, phosphopeptide identification, and determination of sites of phosphorylation 2.4 Quantitative phosphoproteomics Troubleshooting References apter 10. Protein microarray technologies ien-Sheng Chen, Sheng-Ce Tao, and Heng Zhu Introduction Protein microarray fabrication 2.1 Surface materials 2.2 Protein printing 2.3 Assay platforms 2.4 Detection methods Analytical protein microarrays Functional protein microarrays 4.1 Expression-ready open reading frame collections and high-throughput production of proteins 4.2 Protein—protein and protein—lipid interactions 4.3 Protein—DNA interactions 4.4 Protein—drug interactions 4.5 Protein—peptide interactions 4.6 Protein—cell interactions 4.7 Identification of kinase substrates on protein chips 4.8 Protein glycosylation analysis 4.9 Profiling immune responses Development of new protein microarray technologies 5.1 Reverse-phase protein microarrays 5.2 Making protein microarrays without large-scale cloning and expressions

202

7. References

Ch	apter 11. Intelligent mining of complex data: challenging the		
pr	oteomic bottleneck.		
Da	an Bach Kristensen and Alexandre Podtelejnikov		
1.	Introduction	207	
2.	Methods and approaches	209	
	2.1 Instrumentation	210	
	2.2 Database selection	212	
	2.3 Selection of a search engine	213	
	2.4 Data mining in shotgun proteomics	215	
3.	EPICENTER	216	
	3.1 Data organization and import	216	
	3.2 Automatic and manual peptide validation	218	
	3.3 Data mining — exploring datasets	220	
	3.4 Data mining — comparing datasets	222	
	3.5 Additional EPICENTER features	223	
	3.6 Conclusions	224	
4.	References	224	
	i		
	apter 12. Bioinformatic approaches in proteomics		
	ndra Orchard and Henning Hermjakob		
1.	Introduction	227	
2.	Methods and approaches	228	
	2.1 <i>In silico</i> characterization of proteins	228	
	2.2 Data standardization	230	
	2.3 Methodology	232	
3.	Troubleshooting	242	
4.	References	243	
	pendix		
List of suppliers 2			

249

Index