Nong Ye

Secure Computer and Network Systems

Modeling, Analysis and Design

Contents

Preface	xi
Part I An Overview of Computer and Network Securit	ty
1 Assets, vulnerabilities and threats of computer and ne	
1.1 Risk assessment	3
1.2 Assets and asset attributes	4
1.2.1 Resource, process and user assets and their int	eractions 5
1.2.2 Cause-effect chain of activity, state and perfor	
1.2.3 Asset attributes	8
1.3 Vulnerabilities	11
1.3.1 Boundary condition error	12
1.3.2 Access validation error and origin validation e	
1.3.3 Input validation error	13
1.3.4 Failure to handle exceptional conditions	13
1.3.5 Synchronization errors	13
1.3.6 Environment error	13
1.3.7 Configuration error	14
1.3.8 Design error	14
1.3.9 Unknown error	15
1.4 Threats	15
1.4.1 Objective, origin, speed and means of threats	15
1.4.2 Attack stages	21
1.5 Asset risk framework	21
1.6 Summary	22
References	23
2 Protection of computer and network systems	25
2.1 Cyber attack prevention	25
2.1.1 Access and flow control	25
2.1.2 Secure computer and network design	29
2.2 Cyber attack detection	29
2.2.1 Data, events and incidents	30
2.2.2 Detection	31
2.2.3 Assessment	32

vi		Contents	
	23	Cyber attack response	32
		Summary	33
	2.7	References	33
P	art I	I Secure System Architecture and Design	
3	Ass	et protection-driven, policy-based security protection architecture	39
_		Limitations of a threat-driven security protection paradigm	39
		A new, asset protection-driven paradigm of security protection	40
		3.2.1 Data to monitor: assets and asset attributes	41
		3.2.2 Events to detect: mismatches of asset attributes	41
		3.2.3 Incidents to analyze and respond: cause–effect chains of mismatch events	42
		3.2.4 Proactive asset protection against vulnerabilities	42
	3.3	Digital security policies and policy-based security protection	43
		3.3.1 Digital security policies	43
		3.3.2 Policy-based security protection	45
	3.4	Enabling architecture and methodology	46
		3.4.1 An Asset Protection Driven Security Architecture (APDSA)	46
		3.4.2 An Inside-Out and Outside-In (IOOI) methodology of gaining	
		knowledge about data, events and incidents	47
	3.5	Further research issues	48
		3.5.1 Technologies of asset attribute data acquisition	48
		3.5.2 Quantitative measures of asset attribute data and mismatch events	48
		3.5.3 Technologies for automated monitoring, detection, analysis and	
		control of data, events, incidents and COA	49
	3.6	Summary	49
		References	50
4	Job	admission control for service stability	53
		A token bucket method of admission control in DiffServ and InteServ models	53
		Batch Scheduled Admission Control (BSAC) for service stability	55
		4.2.1 Service stability in service reservation for instantaneous jobs	56
		4.2.2 Description of BSAC	57
		4.2.3 Performance advantage of the BSAC router model over a	
		regular router model	60
	4.3	Summary	64
		References	64
5	Job	scheduling methods for service differentiation and service stability	65
		Job scheduling methods for service differentiation	65
		5.1.1 Weighted Shortest Processing Time (WSPT), Earliest Due Date	
		(EDD) and Simplified Apparent Tardiness Cost (SATC)	65
		5.1.2 Comparison of WSPT, ATC and EDD with FIFO in the best	
		effort model and in the DiffServ model in service differentiation	66
	5.2	Job scheduling methods for service stability	70
		5.2.1 Weighted Shortest Processing Time – Adjusted (WSPT-A) and	
		its performance in service stability	70

_		Contents	vii
_		5.2.2 Verified Spiral (VS) and Balanced Spiral (BS) methods for a	
		single service resource and their performance in service stability	73
		5.2.3 Dynamics Verified Spiral (DVS) and Dynamic Balanced Spiral	
		(DBS) methods for parallel identical resources and their	
		performance in service stability	78
	5.3	Summary	79
		References	79
6	Job	reservation and service protocols for end-to-end delay guarantee	81
	6.1	Job reservation and service in InteServ and RSVP	81
	6.2	Job reservation and service in I-RSVP	82
	6.3	Job reservation and service in SI-RSVP	86
	6.4	Service performance of I-RSVP and SI-RSVP in comparison with the	
		best effort model	89
		6.4.1 The simulation of a small-scale computer network with I-RSVP,	
		SI-RSVP and the best effort model	89
		6.4.2 The simulation of a large-scale computer network with I-RSVP,	
		SI-RSVP and the best effort model	91
		6.4.3 Service performance of I-RSVP, SI-RSVP and the best effort	
		model	93
	6.5	Summary	102
		References	103
p	art I	III Mathematical/Statistical Features and Characteristics of Attack	
•	a1 t 1	and Normal Use Data	
7	Col	llection of Windows performance objects data under attack and	
	nor	mal use conditions	107
	7.1	Windows performance objects data	107
	7.2	Description of attacks and normal use activities	111
		7.2.1 Apache Resource DoS	111
		7.2.2 ARP Poison	111
		7.2.3 Distributed DoS	112
		7.2.4 Fork Bomb	113
		7.2.5 FTP Buffer Overflow	113
		7.2.6 Hardware Keylogger	113
		7.2.7 Remote Dictionary	113
		7.2.8 Rootkit	113
		7.2.9 Security Audit	114
		7.2.10 Software Keylogger	114
		7.2.11 Vulnerability Scan	114
		7.2.12 Text Editing	114
		7.2.13 Web Browsing	114
	7.3	Computer network setup for data collection	115
	7.4	Procedure of data collection	115
	7.5	Summary	118
		References	118

Contents

viii

8			haracteristics of attack and normal use data	119
			n feature of data and two-sample test of mean difference	119
			-processing	121
			ing mean shift data characteristics for attacks	121
	8.4		ift attack characteristics	122
			Examples of mean shift attack characteristics	122
			Mean shift attack characteristics by attacks and windows	
			performance objects	124
			Attack groupings based on the same and opposite attack	
			characteristics	128
			Unique attack characteristics	136
		Summar		139
		Reference	es	139
9		•	distribution change characteristics of attack and normal use data	141
			tion of data patterns	141
		Procedu	s and mode tests to identify five types of probability distributions re for discovering probability distribution change data	146
			ristics for attacks	148
	9.4		ion change attack characteristics	150
			Percentages of the probability distributions under the attack	
			and normal use conditions	150
			Examples of distribution change attack characteristics	151
			Distribution change attack characteristics by attacks and	
			Windows performance objects	151
			Attack groupings based on the same and opposite attack characteristics	161
			Unique attack characteristics	167
	9.5	Summar		173
		Reference	ees	174
1			ation change characteristics of attack and normal use data	175
			utocorrelation feature of data	175
			vering the autocorrelation change characteristics for attacks	176
	10		orrelation change attack characteristics	178
		10.3.1	Percentages of variables with three autocorrelation levels	
			under the attack and normal use conditions	178
			Examples of autocorrelation change attack characteristics	179
		10.3.3	Autocorrelation change attack characteristics by attacks and	100
		100	Windows performance objects	182
			Attack groupings based on the same and opposite attack characteristics	182
	1.0		Unique attack characteristics	193
	10	.4 Sumn		193
		Refer	ences	196
1			ange characteristics of attack and normal use data	197
			vavelet feature of data	197
	11	.2 Disco	vering the wavelet change characteristics for attacks	201

		Cor	ntents	ix
	11.3	Wave change attack characteristics		203
		11.3.1 Examples of wavelet change attack characteristics		203
		11.3.2 Wavelet change attack characteristics by attacks and		
		Windows performance objects		204
		11.3.3 Attack groupings based on the same and opposite attack		
		characteristics		222
		11.3.4 Unique attack characteristics		225
	11.4	Summary		243
		References		243
Pa	rt IV	Cyber Attack Detection: Signature Recognition		
12	Clus	tering and classifying attack and normal use data		247
		Clustering and Classification Algorithm – Supervised (CCAS)		248
		Training and testing data		251
		Application of CCAS to cyber attack detection		251
		Detection performance of CCAS		253
		Summary		256
		References		256
13	Lear	rning and recognizing attack signatures using artificial neural netwo	orks	257
	13.1	The structure and back-propagation learning algorithm of		
		feedforward ANNs		257
		The ANN application to cyber attack detection		260
	13.3	summary		270
		References		271
Pa	rt V	Cyber Attack Detection: Anomaly Detection		
14	Stati	stical anomaly detection with univariate and multivariate data		275
	14.1	EWMA control charts		275
	14.2	Application of the EWMA control chart to cyber attack detection		277
	14.3	Chi-Square Distance Monitoring (CSDM) method		284
	14.4	Application of the CSDM method to cyber attack detection		286
	14.5	Summary		288
		References		288
15	Stoc	hastic anomaly detection using the Markov chain model of event		
13		sitions		291
		The Markov chain model of event transitions for cyber attack detection	n	291
		Detection performance of the Markov chain model-based anomaly	11	27 l
	13.2			
		detection technique and performance degradation with the increased		202
	15.0	mixture of attack and normal use data		293
	15.3	Summary		295
		References		296

	~ .	
v	Conter	110

Part VI	Cyber Attack Detection: Attack Norm Separation	
16 Mat	hematical and statistical models of attack data and normal use data	299
16.1	The training data for data modeling	299
16.2	Statistical data models for the mean feature	300
16.3	Statistical data models for the distribution feature	300
16.4	Time-series based statistical data models for the autocorrelation feature	301
16.5	The wavelet-based mathematical model for the wavelet feature	304
16.6	Summary	309
	References	312
17 Cuse	core-based attack norm separation models	313
17.1	The cuscore	313
17.2	Application of the cuscore models to cyber attack detection	314
17.3	Detection performance of the cuscore detection models	316
17.4	Summary	323
	References	325
Part VI	Security Incident Assessment	
_	mal selection and correlation of attack data characteristics in	
	ck profiles	329
18.1	Integer programming to select an optimal set of attack data characteristics	329
	Attack profiling	330
18.3	Summary	332
	References	332
Index		333