An Introduction to

PLANT BREEDING

Jack Brown Peter Caligari

> Dackwell Bublishing

Contents

1	Introduction	1		Testing plant resistance	31
	Requirements of plant breeders	1		Conclusions	32
	Evolution of crop species	3		Think questions	32
	Why did hunter gathers become farmers? What crops were involved? And when did	3	4	Breeding schemes	34
	this occur?	4		Introduction	34
	Natural and human selection	6		Development of self-pollinating cultivars	34
	Contribution of modern plant breeders	7		Homozygosity	35
	Think questions	9		Single seed descent	36
	177111K GMCSIVOTIS			Off-season sites	36
า	Mades of some duction and types of cultivar	11		Breeding schemes for pure-line cultivars	37
2	Modes of reproduction and types of cultivar			Bulk method	37
	Introduction	11		Pedigree method	38
	Modes of reproduction	12		Bulk/pedigree method	38
	Sexual reproduction	13		Modified pedigree method	39
	Asexual reproduction	14		Number of segregating populations and	
	Reproduction through plant parts	14		selections	40
	Reproduction by apomixis	14		Seed increases for cultivar release	40
	Types of cultivar	14		Mass bulk increase	40
	Pure-line cultivars	15		Progeny test increase	40
	Open-pollinated cultivars	15		Developing multiline cultivars	4 1
	Hybrid cultivars	15		Backcrossing	42
	Clonal cultivars	15		Development of outbreeding cultivars	43
	Synthetic cultivars	16		Breeding schemes for open-pollinating	
	Multiline cultivars	16		population cultivars	43
	Composite-cross cultivars	16		Mass selection	43
	Annuals and perennials	16		Recurrent phenotypic selection	43
	Reproductive sterility	16		Progeny testing	44
	Think questions	16		Backcrossing on open pollinated-cultivar development	44
3	Breeding objectives	18		Seed production	44
	Introduction	18		Developing synthetic cultivars	44
	People, political and economic criteria	18		Seed production of a synthetic cultivar	46
	Increasing grower profitability	21		Developing hybrid cultivars	46
	Increasing harvestable yield	22		Heterosis	48
	Selection for yield increase	22		Types of hybrid	51
	Increasing end-use quality	23		Breeding system for hybrid cultivars	51
	Testing for end-use quality	25		Backcrossing in hybrid cultivar	
	Increasing pest and disease resistance	26		development	52
	Types of plant resistance	29		Hybrid seed production and	
	Mechanisms for disease resistance	30		cultivar release	52

	Development of clonal cultivars	53		Heritability from offspring-parent	
	Outline of a potato breeding scheme	54		regression	100
	Time to develop clonal cultivars	55		Diallel crossing designs	102
	Sexual reproduction in clonal crops	56		Griffing's Analysis	103
	Maintaining disease-free parental lines			Example of Griffing analysis of	
	and breeding selections	56		half diallel	106
	Seed increase of clonal cultivars	57		Hayman and Jinks' analysis	107
	Developing apomictic cultivars	57		Estimating h_n^2 from Hayman and	107
	Summary	58		Jink's Analysis	110
	Think questions	58		Cross prediction	111
5	•	60		Think questions	112
,	Genetics and plant breeding Introduction	60	_	*	
	Qualitative genetics	60	7	Selection	116
	Genotype/phenotype relationships	61		Introduction	116
	Segregation of qualitative genes in	01		What to select and when to select	116
	diploid species	62		Qualitative trait selection	117
	Qualitative linkage	64		Quantitative trait selection	117
	Pleiotropy	67		Positive and negative selection	117
	Epistasis	67		Response to selection	117
	Qualitative inheritance in	07		Association between variates or years	120
	tetraploid species	68		Heritability and its limitations	121
	The chi-square test	70		Methods of selection	121
	Improper use of chi-square	71		Independent cull selection	122
	Family size necessary in qualitative	<i>,</i> 1		Index selection	122
	genetic studies	72		Errors in selection	123
	Quantitative genetics	73		Applied selection	126
	The basis of continuous variation	73		Number of genotypes in initial	120
	Describing continuous variation	74		populations	127
	The normal distribution	74		Early generation selection	128
	Variation between data sets	76		Visual assessment	129
	Relating quantitative genetics and the	, -		Mass selection	130
	normal distribution	77		Efficiency of early generation	150
	Quantitative genetics models	78		selection	130
	Testing the models	81		Intermediate generation selection	131
	The A-scaling test	82		Field trials	
	Joint scaling test	84			131
	What could be wrong with the model	87		Variates recorded	132
	Quantitative trial loci	88		Data analysis and interpretation	132
	Think questions	92		Selection	133
_	ŕ			Advanced selection	133
6	Predictions	96		Choice of advanced trial locations	133
	Introduction	96		Number of locations	134
	Genotype × environment interactions	96		Experimental design	135
	Genetically based predictions	97		Genotype by environment	
	Heritability	97		interactions	135
	Broad-sense heritability	98		Analysis of location trials	136
	Narrow-sense heritability	99		Bartlett test	136

	Detecting significant			Tissue culture	166
	treatment \times environment			Haploidy	166
	interactions	137		Techniques used for producing	
	Worked example	138		haploids in vitro	166
	Interpreting $G imes E$ interactions	139		Some potential problems	167
	Selection	141		Genotype dependence	167
	Cross prediction	141		Somaclonal variation	167
	Univariate cross prediction	141		Non-random recovery of haploid lines	167
	Estimation of \mathbf{m} and \mathbf{V}_A	142		Practical applications of haploids	167
	Setting target values	143		In vitro multiplication	168
	Predicted from number in sample	144		Plant transformation	168
	Use of cross prediction in clonal crops	144		Some applications of genetic engineering	
	Use of normal distribution function			to plant breeding	169
	tables	145		Process of plant transformation	170
	Univariate cross prediction example	145		Cautions and related issues	171
	Multi-variate cross prediction	147		Molecular markers in plant breeding	172
	Example of multi-variate cross			Theory of using markers	172
	prediction	148		Types of marker systems	173
	Observed number in a sample from		i	Molecular markers	174
	each cross	148		Non-PCR methods – DNA/DNA	
	Use of rankings	148		hybridization	174
	Parental selection	149		PCR methods – arbitrarily primed	
	Phenotypic evaluation	149	:	techniques – multi-locus systems	175
	Genotypic evaluation	150		PCR methods – site targeted	
	Parental combinations	151		techniques – single locus systems	175
	Germplasm collections	151		Uses of molecular markers	175
	Think questions	152		Problems with markers	176
				Think questions	177
8	Alternative techniques in plant breeding	157		•	
	Introduction	157	9	Some practical considerations	178
	Induced mutation	157		Introduction	178
	Method of increasing the frequency of			Experimental design	178
	mutation	158		Unreplicated designs	179
	Types of mutation	158		Randomized designs	180
	Plant parts to be treated	158		Completely randomized designs	180
	Dose rates	159		Randomized complete block designs	181
	Dangers of using mutagens	159		Factorial designs	181
	Impact of mutation breeding	160		Split-plot designs	182
	Practical applications	160		Greenhouse management	182
	Interspecific and intergeneric hybridization	162		Artificial hybridization	182
	Characters introduced to crops from wild			Seed and generation increases	184
	related species	163		Evaluation of breeding lines	184
	Factors involved in interspecific or			Environmental control	185
	intergeneric hybridization	163		Disease control	185
	Hybrid sterility	165		Economics	186
	Backcrossing	165		Experimental design in the glasshouse	187
	Increasing genetic diversity	165		Field plot techniques	187
	Creating new species	165		Choice of land	187
	-			i	

Plot size and replication	188	Release of new cultivars	197
Guard rows and discard rows	190	Information needed prior to cultivar	
Machinery	190	release	198
Use of computers in plant breeding	192	Distinctness, uniformity and stability	
Data storage and retrieval	193	(DUS)	198
Field plan design	194	Value in release	198
Clerical operations	194	Cultivar names	198
Data collection	195	Cultivar protection	199
Data analysis	195	Patents	199
Selection	196	Genetically modified crop plants	200
Data transfer	197	Think questions	201
Statistician consultation	197	•	
Ease of use	197	Index	203