Gerhard Krauss

Biochemistry of Signal Transduction and Regulation

Fourth, Enlarged and Improved Edition

Contents

Preface VII

1	Basics of Cell Signaling 1
1.1	Cell Signaling: Why, When and Where? 1
1.2	Intercellular Signaling 3
1.2.1	Tools for Intercellular Signaling 3
1.2.2	Steps of Intercellular Signaling 5
1.2.3	Regulation of Intercellular Signaling 7
1.3	Hormones in Intercellular Signaling 8
1.3.1	Chemical Nature of Hormones 8
1.3.2	Hormone Analogs: Agonists and Antagonists 12
1.3.3	Endocrine, Paracrine and Autocrine Signaling 13
1.3.4	Direct Protein Modification by Signaling Molecules 15
1.4	Intracellular Signaling: Basics 15
1.4.1	Reception of External Signals 15
1.4.2	Activation and Deactivation of Signaling Proteins 16
1.4.3	Processing of Multiple Signals 17
1.4.4	Variability of Signaling Proteins 17
1.5	Molecular Tools for Intracellular Signaling 18
1.5.1	Receptors 18
1.5.2	Signaling Enzymes 21
1.5.3	Adaptors and Scaffolding Proteins 22
1.5.4	Diffusible Intracellular Messengers: Second Messengers 22
1.6	Basic Mechanisms of Intracellular Signaling 24
1.6.1	Regulatory Modifications 24
1.6.2	Recognition of Protein Modifications by
	Modification-specific Protein Modules 25
1.6.3	Multisite Protein Modification 26
1.6.4	Protein Interaction Domains 28
1.7	Modular Structure of Signaling Proteins and
	Signaling Complexes 32
1.7.1	Modules in Signaling Proteins 32
1.7.2	Modular Signaling Complexes 33

Biochemistry of Signal Transduction and Regulation. 4^{th} Edition. Gerhard Krauss Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31397-6

(Contents
---	----------

1.5	Organization of Signating 34
1.8.1	Linear Signaling Pathways, Branching and Crosstalk 35
1.8.1.1	Linear Pathways 35
1.8.1.2	Branching and Crosstalk 37
1.8.1.3	Interactions between Signaling Paths 37
1.8.2	Signaling Networks 38
1.8.2.1	Complexity of Signaling Networks 39
1.8.2.2	Properties of Signaling Networks 39
1.8.2.3	Nodes and Junctions 41
1.8.2.4	Feedback Loops 42
1.8.3	Redundancy and Specificity of Signaling 46
1.8.4	Regulation of Signaling Pathways 47
1.8.5	Spatial Organization of Signaling Pathways 49
1.8.6	Compartmentalization and Transport 50
1.8.7	Evolution of Signaling Pathways 51
1.9	Variability and Cell-type Specificity of Signaling 51
1.10	References 53
2	Regulation of Enzyme Activity 55
2.1	Basis of Enzyme Catalysis 56
2.2	Basics of Allosteric Regulation 58
2.3	Regulation of Enzymes by Effector Molecules 60
2.4	Regulation of Enzyme Activity by Phosphorylation 62
2.5	"Ubiquitin (Ub)Proteasome" Pathway 64
2.5.1	Components of the Ub System 65
2.5.2	Ub and Ub-like Proteins 66
2.5.3	Activation and Transacylation of Ub:
	E1 and E2 Enzymes 67
2.5.4	Transfer to the Target Protein with the Participation
	of E3 69
2.5.5	HECT Domain E3 Enzymes 71
2.5.6	RING Domain E3 Enzymes 72
2.5.6.1	N-end Rule Enzymes 73
	Cbl Protein 73
	Cullin-based E3 Enzymes, SCF and APC 74
2.5.6.4	Processing of Nuclear Factor (NF) kB and Degradation
	of IκB 76
2.5.7	Degradation in the Proteasome 78
2.5.8	Other Regulatory Functions of Ub Conjugation 80
2.5.9	Regulation of Proteins by Sumoylation 82
2.6	Lipidation of Signaling Proteins 83
2.6.1	Myristoylation 84
2.6.2	Palmitoylation 85
2.6.3	Farnesylation and Geranylation 86
2.6.4	Dual Lipidation 87

2.6.5	Cholesterol Membrane Anchor 88
2.6.6	Switch Function of Lipid Anchors 88
2.6.7	Glycosylphosphatidylinositol (GPI) Anchor 90
2.7	References 91
3	Regulation of Gene Expression 93
3.1	Basic Steps of Gene Expression 93
3.2	Components of the Eukaryotic Transcription Machinery 95
3.2.1	Basic Features of Eukaryotic Transcription 96
3.2.2	Elementary Steps of Eukaryotic Transcription 98
3.2.3	Eukaryotic RNA Polymerases 98
3.2.4	Structure of the Transcription Start Site and
	Regulatory Sequences 100
3.2.5	General Transcription Factors and the
	Core Transcription Apparatus 101
3.2.6	Holoenzyme Forms of RNA Pol II 103
3.2.7	Phosphorylation of RNA Pol II and the Onset
	of Transcription 104
3.2.8	TFIIH – A Pivotal Regulatory Protein Complex 106
3.2.9	Mediator Complex 107
3.3	Principles of Transcription Regulation 109
3.3.1	Elements of Transcription Regulation 109
3.3.2	Regulation of Eukaryotic Transcription by Sequence-specific
	DNA-binding Proteins 111
3.3.3	DNA Binding of Transcriptional Regulators 112
3.3.4	Structure of the Recognition Sequence and Quaternary
	Structure of DNA-binding Proteins 113
3.3.5	Communication with the Transcription Apparatus:
	Transactivation Domains 115
3.3.6	Families of Sequence-specific Transcription Factors and
	Homo- or Heterodimerization 116
3.4	Control of Transcription Factors 118
3.4.1	Mechanisms for the Control of Regulatory DNA-binding
	Proteins 118
3.4.2	Changes in the Concentration of Regulatory DNA-binding
•	Proteins 119
3.4.3	Regulation by Binding of Effector Molecules 119
3.4.4	Posttranslational Modification of Transcription
2	Regulators 120
3.4.5	Regulation by Phosphorylation 121
3.4.6	Regulation by Methylation, Acetylation and
	Redox Modification 125

3.4.7	Transcriptional Regulation in the Framework of
	Signal Transduction Networks 125
3.4.7.1	Constitutively Active Transcription Factors 126
3.4.7.2	Regulatory Transcription Factors 126
3.4.8	Repression of Transcription 128
3.4.9	Coregulators of Transcription 130
3.5	Chromatin Structure and Transcription Regulation 131
3.5.1	Nucleosome and Chromatin Structure 132
3.5.2	Histone Acetylation and Deacetylation 134
3.5.3	Histone Methylation 136
3.5.3.1	Histone Arginine Methylation 136
3.5.3.2	Arginine Demethylation/Citrullination 138
3.5.3.3	Histone Lysine Methylation 138
3.5.3.4	Histone Lysine Demethylation 139
3.5.4	Histone Phosphorylation 140
3.5.5	Histone Ubiquitination and Sumoylation 141
3.5.6	Histone Modification "Code" 141
3.5.7	Recognition of Histone Modifications by
	Protein Domains 143
3.5.8	DNA Methylation 144
3.5.9	Summary of the Regulatory Steps in Transcription 148
3.6	Posttranscriptional Regulation of Gene Expression 150
3.6.1	Control at the Level of Pre-mRNA Processing 151
3.6.2	Stability of mRNA 155
3.6.3	Regulation at the Level of Translation 157
3.6.3.1	General Mechanisms of Translational Control 157
3.6.3.2	mRNA-specific Regulation by 5' Sequences:
	Control of Ferritin mRNA Translation by Iron 159
3.6.3.3	mRNA-specific Translational Regulation by
	Protein Binding to 3'-Untranslated Regions 160
3.6.3.4	Global Translational Regulation of mRNAs by
	Targeting eIF-4E 162
3.6.3.5	Regulation of Translation via eIF-2 164
3.7	Regulation by RNA Interference (RNAi) 167
3.7.1	Small Regulatory RNAs 170
3.7.2	Incorporation of Small RNAs into RISC 172
3.7.3	Cleaving the Target RNA 173
3.7.4	Specificity and Target Selection in RNAi 175
3.7.5	Biological Functions of RNAi 176
3.7.5.1	Functions and Applications of siRNAs 176
3.7.5.2	Functions of miRNAs 176
3.7.5.3	RISCs and Chromatin Structure 177
3.8	References 179

4	Signaling by Nuclear Receptors 181
4.1	Ligands of Nuclear Receptors 181
4.2	Principles of Signaling by Nuclear Receptors 184
4.3	Classification and Structure of Nuclear Receptors 186
4.3.1	DNA-binding Elements of Nuclear Receptors: HREs 187
4.3.2	The DNA-binding Domain of Nuclear Receptors 189
4.3.3	HRE Recognition and Structure of the HRE-Receptor
	Complex 190
4.3.4	Ligand-binding Domain (LBD) 191
4.3.5	Transactivating Elements of the Nuclear Receptors 195
4.4	Mechanisms of Transcriptional Regulation by
	Nuclear Receptors 196
4.4.1	Steroid Receptor Coactivator (SRC)-1/p160 and
	Thyroid Hormone Receptor-activating Protein (TRAP)
	Coactivators 198
4.4.2	Corepressors of Nuclear Receptors 200
4.5	Regulation of Signaling by Nuclear Receptors 200
4.6	The Signaling Pathway of the Steroid Hormone
	Receptors 203
4.7	Signaling by Retinoids, Vitamin D ₃ and the
	T ₃ Hormone 205
4.8	Nongenomic Functions of Nuclear Receptors and
	their Ligands 207
4.9	References 211
	1
5	G-protein-coupled Signal Transmission Pathways 213
5.1	Transmembrane (TM) Receptors: General Structure and
	Classification 213
5.2	Structural Principles of TM Receptors 215
5.2.1	The Extracellular Domain of TM Receptors 217
5.2.2	TM Domain 217
5.2.3	Intracellular Domain of Membrane Receptors 219
5.2.4	Regulation of Receptor Activity 221
5.3	GPCRs 222
5.3.1	Classification of GPCRs 223
5.3.2	Structure of GPCRs 225
5.3.3	Ligand Binding and Mechanism of
	Signal Transmission 227
5.3.4	Regulation of GPCRs 228
5.3.5	Switching Off and Desensitization of 7TM Receptors 229
5.3.6	Dimerization of GPCRs 233
5.4	Regulatory GTPases. 233
5.4.1	The GTPase Superfamily: General Functions and
	Mechanism 234
5.4.2	Inhibition of GTPases by GTP Analogs 236

xıv	Contents	
•	5.4.3	The G-domain as a Common Structural Element of the GTPases 237
	5.4.4	GTPase Families 238
	5.5	Heterotrimeric G-proteins 239
	5.5.1	Classification of the Heterotrimeric G-proteins 240
	5.5.2	Toxins as Tools in the Characterization of
		Heterotrimeric G-proteins 243
	5.5.3	Functional Cycle of Heterotrimeric G-proteins 244
	5.5.4	Structural and Mechanistic Aspects of the Switch Function of G-proteins 247
	5.5.5	Structure and Function of the βγ-Complex 253
	5.5.6	Membrane Association of the G-proteins 255
	5.5.7	Regulators of G-proteins: Phosducin and RGS Proteins 256
	5.6	Receptor-independent Functions of Heterotrimeric G-proteins 259
	5.7	Effector Molecules of G-proteins 259
	5.7.1	Adenylyl Cyclase and cAMP as "Second Messenger" 260
	5.7.2	PLC 264
	5.8	GPCR Signaling via Arrestin 268
	5.9	References 269
	6	Intracellular Messenger Substances: "Second Messengers" 27
	6.1	General Properties of Intracellular Messenger
		Substances 272
	6.2	cAMP 273
	6.3	cGMP and Guanylyl Cyclases 275
	6.3.1	Guanylyl Cyclases 276
	6.3.2	Targets of cGMP 277
	6.4	Metabolism of Inositol Phospholipids and Inositol Phosphates 278
	6.5	Storage and Release of Ca ²⁺ 282
	6.5.1	Release of Ca ²⁺ from Ca ²⁺ Storage 282
	6.5.2	Influx of Ca ²⁺ from the Extracellular Region 288
	6.5.3	Removal and Storage of Ca ²⁺ 288
	6.5.4	Temporal and Spatial Changes in Ca ²⁺ Concentration 289
	6.6	Functions of Phosphoinositides 290
	6.6.1	Messenger Function of PtdIns(3,4,5)P ₃ 291
	6.6.2	Functions of PtdIns(4,5)P ₂ and other Phosphoinositides 291
	6.7	Ca ²⁺ as a Signal Molecule 292
	6.7.1	Calmodulin as a Ca ²⁺ Sensor 295
	6.7.2	Target Proteins of Ca ²⁺ /Calmodulin 297
	6.7.3	Other Ca ²⁺ Sensors 298
	6.8	DAG as a Signal Molecule 299
	6.9	Other Lipid Messengers 300
		*

6.10	NO Signaling Molecule 301
6.10.1	Reactivity of NO 302
6.10.2	Synthesis of NO 303
6.10.3	Physiological Functions of Nitrosylation 305
	Nitrosylation of Metal Centers 305
6.10.3.2	Regulatory Functions of S-Nitrosylation 307
6.10.3.3	3 Toxic Action of NO and Nitrosative Stress 309
6.11	References 310
7	Ser/Thr-specific Protein Kinases and Protein Phosphatases 313
7.1	Classification, Structure and Characteristics of
	Protein Kinases 313
7.1.1	General Classification and Function of Protein Kinases 313
7.1.2	Classification of Ser/Thr-specific Protein Kinases 315
7.2	Structure and Regulation of Protein Kinases 316
7.2.1	Main Structural Elements of Protein Kinases 318
7.2.2	Substrate Binding and Recognition 321
7.2.3	Control of Protein Kinase Activity 322
7.2.4	Regulation of Protein Phosphorylation by Subcellular
	Localization and Specific Targeting Subunits 325
7.3	PKA 327
7.3.1	Structure and Substrate Specificity of PKA 327
7.3.2	Regulation of PKA 329
7.3.3	AKAPs 330
7.4	Phosphatidylinositol-3-kinase (PI3K)/Akt Pathway 332
7.4.1	PI3K 332
7.4.2	PKB/Akt Kinase 335
7.5	PKC 338
7.5.1	Classification and Structure 338
7.5.2	Activation of PKC by Cofactors 341
7.5.3	Regulation of PKC 341
7.5.4	Receptors for PKC and RACK (Receptors for Activated PKC)
	Proteins 344
7.5.5	Functions and Substrates of PKC 345
7.6	Ca ²⁺ /Calmodulin-dependent Protein Kinases (CaMKs) 346
7.6.1	Importance and General Function 346
7.6.2	CaMK II 347
7.7	Ser/Thr-specific Protein Phosphatases 351
7.7.1	Structure and Classification of Ser/Thr Protein
	Phosphatases 351
7.7.2	Regulation of Ser/Thr Protein Phosphatases 352
7.7.3	PP1 353
7.7.4	PP2A 354
7.7.5	PP2B (Calcineurin) 356
7.8	References 350

XVI	Contents

8	Signal Transmission via Transmembrane Receptors
	with Tyrosine-Specific Protein Kinase Activity 361
8.1	Structure and Function of RTKs 363
8.1.1	General Structure and Classification 363
8.1.2	Ligand Binding and Receptor Dimerization 365
8.1.3	Structure and Activation of the Tyrosine
	Kinase Domain 369
8.1.4	Effector Proteins of the RTKs 373
8.1.5	Attenuation and Termination of RTK Signaling 376
8.2	Protein Modules in Downstream Signaling of RTKs 379
8.2.1	Domains with Binding Specificity for Phosphotyrosine:
	SH2, PTB and C2 Domains 381
8.2.2	SH3 Domains 384
8.2.3	Membrane-targeting Domains: Pleckstrin Homology (PH)
	Domains and FYVE Domains 385
8.2.4	Phosphoserine/Threonine-binding Domains 386
8.2.5	PDZ Domains 387
8.3	Non-RTK-specific Protein Kinases 388
8.3.1	Structure and General Function of Non-RTKs 389
8.3.2	Src Tyrosine Kinase 390
8.3.3	Abl Tyrosine Kinase 392
8.4	PTPs 395
8.4.1	Structure and Classification of PTPs 396
8.4.2	Cooperation of PTPs and Protein Tyrosine Kinases 399
8.4.3	Regulation of PTPs 401
8.5	Adaptor Molecules of RTKs 404
8.6	References 408
9	Signal Transmission via Ras Proteins 411
9.1	Ras Superfamily of Monomeric GTPases 411
9.2	GAPs of the Monomeric GTPases 413
9.3	GEFs of the Monomeric GTPases 414
9.4	Inhibitors of G-nucleotide dissociation GDIs 416
9.5	Ras Family of Monomeric GTPases 417
9.5.1	General Properties of the Ras Protein 418
9.5.2	Structure of the GTP- and GDP-bound Forms of
	Ras Protein 419
9.5.3	GTP Hydrolysis Mechanism and Stimulation by
	GAP Proteins 420
9.5.4	Structure and Biochemical Properties of
	Transforming Mutants of Ras Protein 422
9.5.5	Membrane Localization of Ras Protein 423
9.5.6	GAPs in Ras Signal Transduction 424
9.5.7	GEFs in Ras Signal Transduction 424

9.6	Raf Kinase as an Effector of Signal Transduction by
	Ras Proteins 427
9.6.1	Structure of Raf Kinase 427
9.6.2	Mechanism of Activation and Regulation of Raf Kinase 428
9.6.3	Oncogenic Activation of Raf 430
9.7	Further Ras Family Members: R-Ras, Ral and Rap 430
9.8	Reception and Transmission of Multiple Signals by Ras Protein 431
9.8.1	Multiple Input Signals of Ras Protein 431
9.8.2	Multiple Effector Molecules of Ras Proteins 432
9.9	Further Branches of the Ras Superfamily 434
9.9.1	Rho/Rac Family 434
9.9.2	Rab Family 435
9.9.3	Ran Family 435
9.9.4	Arf Family 436
9.10	Ras Protein Network and Crosstalk within the
7.10	Ras Superfamily 436
9.11	References 439
J.11.	
10	Intracellular Signal Transduction: Protein Cascades of
	the Mitogen-activated Protein Kinase Pathways 441
10.1	Organization and Components of MAPK Pathways 443
10.2	Regulation of MAPK Pathways by Protein Phosphatases
	and Inhibitory Proteins 446
10.3	Specificity in MAPK Activation and Organization in
	Multiprotein Complexes 447
10.4	Major MAPK Pathways of Mammals 450
10.4.1	ERK Pathway 450
10.4.2	JNK and p38 MAPK Pathways 451
10.5	References 456
11	Membrane Receptors with Associated Tyrosine
	Kinase Activity 457
11.1	Cytokines and Cytokine Receptors 457
11.2	Structure and Activation of Cytokine Receptors 458
11.2.1	Activation of Cytoplasmic Tyrosine Kinases 465
11.2.2	The JAK–STAT Pathway 468
11.2.2.1	
	STAT Proteins 469
11.2.3	Regulation of Cytokine Receptor Signaling 472
11.3	T and B Cell Receptors (TCRs and BCRs) 474
11.3.1	Receptor Structure 474
11.3.2	Intracellular Signal Molecules of the TCRs and BCRs 476
11.4	Signal Transduction via Integrins 478
11.5	References 482

12	Other Transmembrane Receptor Classes 483
12.1	Receptors with Intrinsic Ser/Thr Kinase Activity:
	TGF-β Receptor and SMAD Protein Signaling 484
12.1.1	Family of TGF-β Cytokines 484
12.1.2	TGF-β Receptor 485
12.1.3	SMAD Proteins 486
12.2	Receptor Regulation by Intramembrane Proteolysis:
	Notch Receptor 491
12.3	References 494
13	Regulation of the Cell Cycle 495
13.1	Principles of Cell Cycle Control 496
13.2	Key Elements of the Cell Cycle Apparatus 499
13.2.1	CDKs 499
13.2.2	Cyclins 502
13.2.3	CKIs 505
13.3	CDK–Cyclin Complexes 507
13.3.1	Structure of CDKs and CDK-Cyclin complexes 508
13.3.2	Regulation of CDKs by Phosphorylation 509
13.3.3	Inhibition by CKIs 511
13.3.4	Substrates of CDKs 512
13.3.5	Multiple Regulation of CDKs 514
13.4	Regulation of the Cell Cycle by Proteolysis 515
13.4.1	Proteolysis mediated by the SCF Complex 516
13.4.2	Proteolysis mediated by the APC 517
13.5	G ₁ Progression and S-phase Entry 518
13.5.1	CDK4/6 and the D-type Cyclins 519
13.5.2	Central Function of CDK2-Cyclin E in S-phase Entry 521
13.5.3	Function of Rb in the Cell Cycle 522
13.5.4	E2F Transcription Factors and their Control by Rb 523
13.5.5	Negative Regulation of the G_1/S Transition 526
13.6	Cell Cycle Control of DNA Replication 527
13.7	The G ₂ /M Transition and CDC25C Phosphatase 529
13.8	Progression through the M phase:
	APC and the Metaphase-Anaphase Transition 531
13.9	Summary of Cell Cycle Progression 533
13.10	DNA Damage and DNA Replication Checkpoints 536
13.10.1	Components and Organization of
	DNA Damage Checkpoints 537
	Mammalian G ₁ DNA Damage Checkpoint 539
	S-phase Checkpoint Pathways 540
13.10.4	G ₂ /M Checkpoint 540
13.11	References 541

14	Malfunction of Signaling Pathways and Tumorigenesis:	
	Oncogenes and Tumor Suppressor Genes 543	
14.1	General Aspects of Tumor Formation 543	
14.1.1	Characteristics of Tumor Cells 543	
14.1.2	Genetic Changes in Tumor Cells 545	
14.1.3	Epigenetic Changes in Tumor Cells 546	
14.2	Signaling Proteins Mutated in Cancer: Oncogenes 548	
14.2.1	Mechanisms of Oncogene Activation 549	
14.2.2	Examples of the Functions of Oncogenes 552	
14.3	Tumor Suppressor Genes: General Functions 558	
14.4	Rb in Cancer 559	
14.5	p16 ^{INK4a} Gene Locus and ARF 564	
14.6	Tumor Suppressor Protein p53 565	
14.6.1	Structure and Biochemical Properties of p53 565	
14.6.2	Structure of p53 and its DNA Complex 567	
14.6.3	Posttranslational Modification of p53 567	
14.6.4	Genes Regulated by p53 570	
14.6.5	Regulation of p53 by Ubiquitination and Proteasomal	
	Degradation: The MDM2 Protein 573	
14.6.6	Pathways Involved in Activation of p53 575	
14.6.7	The MDM2-p53 Network and Cancer 578	
14.7	Wnt/β-Catenin Signaling and the Tumor Suppressor APC 578	
14.8	Genomic instability and Tumor Formation: Roles of DNA	
	Repair and DNA Damage Checkpoints 580	
14.9	Common Physiologic Changes in Tumor Cells: Hallmarks of Cancer $$ 582	
14.9.1	Self-sufficiency in Growth Signals 583	
14.9.2	Insensitivity to Antigrowth Signals 584	
14.9.3	Evasion of Programmed Cell Death (Apoptosis) 585	
14.9.4	Limitless Replicative Potential of Cancer Cells 586	
14.10	References 587	
15	Apoptosis 589	
15.1	Basic Functions of Apoptosis 589	
15.2	Overview of Apoptotic Pathways 591	
15.3	Caspases: Death by Proteolysis 592	
15.3.1	Initiator and Effector Caspases 593	
15.3.2	Mechanism of Caspases 594	
15.3.3	Caspase Activation and Regulation 596	
15.4	Bcl-2 Proteins Family: Gatekeepers of Apoptosis 599	
15.5	The Mitochondrial Pathway of Apoptosis 602	

XX Conter

15.6	Death Receptor-triggered Apoptosis	606
15.6.1	Fas/CD95 Signaling Pathway 607	
15.6.2	TNFR1 and Apoptosis 609	
15 7	Links of Anontosis to Cellular Signal	inσ

15.6.2 TNFR1 and Apoptosis 609
15.7 Links of Apoptosis to Cellular Signaling Pathways
15.7.1 Phosphatidylinositol-3-kinase (PI3K)/Akt Kinase
201 Apoptosis 611

and Apoptosis 611
15.7.2 p53 and Apoptosis 612
15.8 References 615

Subject Index 617