

Contents

Preface

Xiii

Dedication xv
CHAPTER 1: Introduction and General Considerations 1
Introduction 1
Integration of Biochemistry with Clinical Medicine 2
General Considerations 2
The Human Body and Organ Systems 2 The Cell 5
Cell Membrane 6 Nucleus 9
Cytoplasm 18
Receptors and Their Cellular Locations 26
Biological Roles of Water 27
Ion Channels 28 pH 30
Further Reading 32
CHAPTER 2: Proteins 33
Prion Disease: A Fatal Protein Conformation 33
Propagation of PrPSc from PrPc in the Cell 35
Amino Acids 39
Chirality 44
Amino Acids Have Two or More Potential Charges 46 Synthesis and Degradation of Amino Acids 50
Proteins 54
Amino Acid Sequence 56
Secondary Structure 57
Further Reading 92

CHAPTER 3: Enzymes 93

Clinical Enzymology in Diagnosis of Disease

93

Enzymes Are Catalytic Proteins 96

Kinetics 97

The Michaelis-Menten Equation 99

Enzyme Inhibition 101

Allosterism 105

Classification 107

Coenzymes 112

Prosthetic Groups 119

Drugs and Enzymes 125

Further Reading 129

CHAPTER 4: Carbohydrates 131

Diabetes: A Prevalent Disease That Disrupts Glucose

Utilization 131

Insulin 138

The Pancreatic Beta Cell 142

Effects of Diabetes 145

Simple Sugars 146

Starch 153

Glycogen 154

Breakdown of Glycogen for Energy Use (Glycogenolysis) 156

Glycogen Synthesis 162

Effects of Hormones on Glycogen Breakdown and Synthesis 163

Glycogen Storage Diseases 169

Is Type 2 Diabetes a Disease of Protein Aggregation? 170

Use of Glucose for Energy 173

Glycerol Can Be Converted to Glucose 182

Glycoproteins 182

Blood Group Proteins 185

Lactose Intolerance 188

Glycobiology 188

Further Reading 188

CHAPTER 5: Lipids 189

Hypercholesterolemia: A Disease in Which Serum Cholesterol

Is Not Properly Imported at the Cellular Level

Biosynthesis of Cholesterol 193

Synthesis of Bile Acids 193

Prognosis 198

Fatty Acids and Fat 198

Fatty Acid Oxidation 202

٧i

Activation and Transport of Fatty Acids into
Mitochondria 206

Lipid Metabolism and Hormonal Control 207

Phospholipids 220

Glycosphingolipids 226

Lipoproteins 233

Lipid Anchoring of Proteins to Membranes 236

Further Reading 238

CHAPTER 6: Nucleic Acids and Molecular Genetics 239

Huntington's Disease: A Trinucleotide Repeat Mutation 239 Purines and Pyrimidines 244

Base-Pairing 249

Biosynthesis of Purines and Pyrimidines and Their Catabolism 252

Purine Interconversions 268

Purine and Pyrimidine Nucleotide Catabolism 271
Disorders of Purine and Pyrimidine Metabolism 283

Biosynthesis of Deoxyribonucleic Acids 288

Mutations and Damage to DNA 298

Specific Nucleases: Restriction Enzymes 300

Natural Genomic DNA 305

Sequencing DNA 308

Inhibition of DNA Synthesis 311

Functional Genomics 312

Gene Therapy 314

Ribonucleic Acids 316

Further Reading 322

CHAPTER 7: Transcription 323

Asbestosis: A Disease of Aberrant Transcription 323

Transcription Factors and Transcription Complex 329

Coactivators and Corepressors 337

The Glucocorticoid Receptor as a Model Transcription

Factor 349

Chromatin 357

Further Reading 363

CHAPTER 8: Polypeptide Hormones 365

Panhypopituitarism: A Malfunction of the Hypothalamus-

Pituitary–End Organ Axis 365

Humoral Mechanism 367

Posterior Pituitary 380

Actions of Releasing Hormones and Anterior Pituitary

Hormones 387

CRH-ACTH-Cortisol Pathway 387

417

Growth Hormone-Releasing Hormone-Growth Hormone-Bodily Growth

Path 392

Gonadotropins 406

Thyrotropin

Prolactin 430

Gastrointestinal Hormones 435

Further Reading 444

CHAPTER 9: Steroid Hormones 445

Stress: A State That Can Have Serious Pathological

Consequences 445

Adrenal Medulla 448

Adrenal Cortex 452

> Aldosterone 452

Cortisol 466

Dehydroepiandrosterone 474

Steroid Hormone Structures 476

Unliganded Forms of Receptors and Mechanism of

Activation 478

Ligands and Receptor Conformation: The Sex Hormones

483

Peroxisome Proliferators and Orphan Receptors

Programmed Cell Death (Apoptosis) Induced by

Glucocorticoids 491

Further Reading 496

CHAPTER 10: Metabolism 497

Hyperammonemia and Disruptions of the Urea Cycle 497

Excess Ammonium Ion and Urea in the Blood Can Be Lethal 497

The Urea Cycle 499

Nitrogen Flow, Amino, and Amide Group Transfers in Amino

Acid Metabolism 503

Transamination 508

Transamidation 512

Deamination 513

Amino Acid Oxidation 514

Amino Acid Decarboxylation 516

Metabolism of Specific Amino Acids to Key Substances 517

Methionine

Phenylalanine and Tyrosine 521
Formation of Catecholamines 524
Formation of Melanin 527
Tryptophan 532
Arginine 536
Histidine 541
Glutamate 544
Serine 545

Catabolism of Amino Acids 546

Metabolism of Lipids 554

Glucagon 559

Fatty Acid Degradation 560

Fat as Storage Energy 561

Lipid and Carbohydrate Metabolism Are Jointly

Regulated 565

Steroid Hormone Metabolism 566

Nucleic Acid Metabolism 570

DNA Damage and Repair 573

Cell Death 575

Carbohydrate Metabolism 577

Regulation of Blood Glucose Level 581

Overview 585

Further Reading 586

CHAPTER 11: Growth Factors and Cytokines 587

New Approaches to Ovarian Cancer, Such as the Action of TRAIL (TNF-Related Apoptosis-Inducing Ligand) Might Form the Basis of a Treatment 587

TNF Superfamily 594

Growth Factors 600

Epidermal Growth Factor 604

Transforming Growth Factor 612

Fibroblast Growth Factor 616

Nerve Growth Factor 623

Colony-Stimulating Factor 627

Erythropoietin 633

Interferon-y 638

Insulin-like Growth Factors 643

Interleukins 654

Further Reading 683

CHAPTER 12: Membrane Transport 685

Cystic Fibrosis: A Genetic Disease Involving Aberrant Ion

Transport 685

Types of Membrane Transport 695

Absorption of Large Molecules 695

Exocytosis 695

Passive Diffusion or Osmosis 697

Energy-Requiring Transport: Active Transport 702

Simple and Coupled Transporters 704

Ions and Gradients 706

How Do Magnesium and Other Divalent Ions Enter

Cells? 713

Proton (H⁺) Transport 714

Amino Acid Transporters 720

Fatty Acid Uptake 723

Sodium Conductance and Voltage-Gated Sodium

Channels 729

Multidrug Resistance Channel (MDR) of the ABC Transporter

Superfamily 732

Blood-Brain Barrier 734

Further Reading 737

CHAPTER 13: Dietary Metals, Iron, Micronutrients, and Nutrition 739

Iron-Deficiency Anemia 739

Ingestion and Uptake of Iron 743

Heme Synthesis 753

Formation of Hemoglobin 760

Dietary Metals 764

Copper 764

Selenium 773

Zinc 776

Magnesium 780

Calcium: A Micronutrient 783

Molybdenum 788

Iodine: A Micronutrient 795

Vitamins 801

Water-Soluble Vitamins 801

Fat-Soluble Vitamins 835

The Diet 849

Protein Nutrition 849

Herbs and Nutraceuticals 852

Further Reading 852

CHAPTER 14: Blood and Lymphatic System 853

Deep Vein Thrombosis: A Major Health Problem 853

The Blood-Clotting Mechanism 864

Blood 871

Transport of Oxygen 871

Carbon Dioxide 878

Blood Cells 879

Blood Proteins 884

Blood Type and Rh 888

Lymphatic System 894

Further Reading 898

CHAPTER 15: Immunobiochemistry 899

The Surveillance System and Cancer 899

Types of Antibodies 910

Polyclonal and Monoclonal Antibodies 915

Opsonization 917

Antibody Formation 917

Autoimmunity 920

Graves' Disease 920

MHC Involvement 922

Theory on the Development of Type I Diabetes (Insulin-Dependent Diabetes

Mellitus) 930

Complement System 933

Regulators of Complement Pathways 942

Properdin 949

C-Reactive Protein 951

Further Reading 953

CHAPTER 16: Neurobiochemistry 955

Pain: A Constant Health Problem 955

Substance P 962

Opioids and Morphine 968

Anandamide 974

Excitatory Amino Acids 988

The Classical Neurotransmitters 1003

Catecholamines and Monoamines 1027

Characteristics of the Brain 1044

Further Reading 1046

CHAPTER 17: Microbial Biochemistry 1047

AIDS: A Deadly Viral Disease 1047 Other Viruses of Current Interest 1068 Human Rhinoviruses 1072 Influenza Viruses 1072 West Nile Virus 1076 Severe Acute Respiratory Syndrome 1078 Bacteriophage 1089 A Bacterial Cell, E. coli 1107

Diseases Caused by *E. coli* Further Reading 1151

Appendices

Appendix 1: Abbreviations of the Common Amino Acids 1153

Appendix 2: The Genetic Code 1155

Base Pairing 1155

1147

Appendix 3: Weights and Measures 1157

Glossary 1159 Index 1177