Analysis of Aircraft Structures An Introduction **SECOND EDITION** Bruce K. Donaldson CAMBRIDGE AEROSPACE SERIES ## **Contents** | Introduction to the Second Edition | | page xix | | |------------------------------------|-----------------------------------|---|---------------| | | Introduction to the First Edition | | XXI | | | - | Repeated Engineering Symbols | xxv
xxxiii | | Ack | cnow | ledgments | XXXIII | | Pai | rt I | The Fundamentals of Structural Analysis | | | | I.1 | An Overview of Part I | 1 | | | 1.2 | Summary of Taylor's Series | 2 | | | I.3 | Summary of Newton's Method for Finding Roots | 2 | | | I.4 | The Binomial Series | 3 | | | I.5 | The Chain Rule for Partial Differentiation | 4 | | 1 | Stre | ess in Structures | 5 | | | 1.1 | The Concept of Stress | 5 | | | 1.2 | The General Interior Equilibrium Equations | 12 | | | 1.3 | Equilibrium at the Outer or Inner Boundary | 19 | | | 1.4 | Plane Stress | 23 | | | 1.5 | Summary | 27 | | | Cha | apter 1 Exercises | 29 | | 2 | Stre | esses and Coordinate Axis Rotations | 38 | | | 2.1 | Introduction | 38 | | | 2.2 | · | 38 | | | 2.3 | | 43 | | | 2.4 | | 47 | | | 2.5 | | 52 | | | 2.6 | * | 53 | | | 2.7 | • | 59 | | | 2.8 | ` , | 59 | | | 2.9 | <u>*</u> | 62 | | | | apter 2 Exercises | 63 | | | End | dnote (1) Solution for the Planes of Principal Stress | 67 | | 3 | Dis | placements and Strains | 68 | | | 3.1 | Introduction | 68 | | | 3.2 | * | 68 | | | 3.3 | | 69 | | | 3.4 | | 77 | | | | Other Strain Definitions | 79 | | | 3.6 | The Strain—Displacement Equations | 80 | | | 3.7 The Compatibility Equations 3.8 Plane Strain 3.9 Summary Chapter 3 Exercises Endnote (1) The Derivation of the Strain-Displacement Equations for Cylindrical Coordinates Endnote (2) A Third Derivation of the Compatibility Equations | 81
85
86
87
89 | |----|---|---| | 4 | Strains in Rotated Coordinate Systems | 95 | | | 4.1 Introduction 4.2 Strains in Other Cartesian Coordinate Systems 4.3 Strain Gauges 4.4 The Mathematical Properties of Strains 4.5 Summary Chapter 4 Exercises | 95
95
98
102
102 | | 5 | The Mechanical Behavior of Engineering Materials | 109 | | | 5.1 Introduction 5.2 The Tensile Test 5.3 Compression and Shear Tests 5.4 Safety Factors 5.5 Factors Other than Stress That Affect Material Behavior 5.6 **Biaxial and Triaxial Loadings** 5.7 Simplifications of Material Behavior Chapter 5 Exercises Endnote (1) Residual Stress Example Problem Endnote (2) Crack Growth Example | 109
116
124
125
127
136
138
140
143 | | 6 | Linearly Elastic Materials | 146 | | | 6.1 Introduction 6.2 Orthotropic Materials 6.3 Isotropic and Other Linearly Elastic Materials 6.4 The Plane Stress Constitutive Equations 6.5 **Applications to Fiber Composites** 6.6 Summary Chapter 6 Exercises Endnote (1) Negative Poisson Ratios | 146
148
153
157
157
159
160
163 | | Pa | nrt II **Introduction to the Theory of Elasticity** | | | | II.1 Introduction | 165 | | 7 | The Theory of Elasticity | 167 | | | 7.1 Introduction 7.2 A Theory of Elasticity Solution Using Stresses 7.3 A Theory of Elasticity Solution Using Displacements 7.4 Reprise 7.5 Summary Chapter 7 Exercises Endnote (1) General Problem Formulations | 167
168
173
177
181
181 | | | Endnote (2) Another Solution to the Disk Displacement Equation Endnote (3) Example 7.1 Compatibility Equation | 190
190 | |-----|---|--| | 8 | Plane Stress Theory of Elasticity Solutions | | | | 8.1 Introduction 8.2 Solution Examples 8.3 St. Venant's Principle 8.4 **Review Problem** 8.5 Summary 8.6 **The Airy Stress Function** Chapter 8 Exercises Endnote (1) An Example of Calculating Displacements from a Stress Solution | 192
192
198
199
202
202
204
209 | | Par | ts I and II Review Questions | 211 | | Pai | rt III Engineering Theory for Straight, Long Beams | | | | III.1 Aircraft and Other Vehicular Structures III.2 The Method of Undetermined Coefficients III.3 Linear Independence III.4 The Mean Value Theorem | 219
221
223
224 | | 9 | Bending and Extensional Stresses in Beams | 225 | | | 9.1 Introduction 9.2 An Elaboration on the Scope of Strength of Materials 9.3 Stress Resultants 9.4 The Approximate Pattern for Beam Displacements 9.5 The Accuracy of the Beam Stress Equation 9.6 Calculation of the Area Properties of the Nonhomogeneous Cross-Section 9.7 Calculation of Equivalent Thermal Loads 9.8 Principal Axes for the Beam Cross-Section 9.9 Summary Chapter 9 Exercises Endnote (1) The Predominance of the Normal Axial Stress Endnote (2) Schwartz's Inequality | 225
226
227
230
238
241
249
252
254
259
268
270 | | 10 | Beam Bending and Extensional Deflections | 271 | | | 10.1 Introduction 10.2 The Small Deflection Beam Equilibrium Equations 10.3 Nonlinear Beam Equilibrium Equations 10.4 Boundary Conditions and the Boundary Value | 271
272
274 | | | Problem 10.5 Uncoupled Forms of the GDEs and the BCs 10.6 Solutions for Beam Deflection Problems 10.7 Summary Chapter 10 Exercises Endnote (1) Different BCs in Different Planes at the Same Beam End Endnote (2) The Nonlinear Form of the Axial Deflection Equation | 282
285
286
296
300
305
306 | | | Endnote (3) The Presence of the Moment per Unit Length Terms in the Shear Force Boundary Condition Expressions Endnote (4) Exact Integrations for a Nonuniform Beam | 307
307 | | |----|---|--|--| | 11 | Additional Beam Bending Topics | 310 | | | | 11.1 Introduction 11.2 The Concept of Elastic Boundary Conditions 11.3 Elastic Support Boundary Conditions 11.4 Concentrated and Partial Span Loads 11.5 Partial Span and Concentrated Load Example Problems 11.6 Introduction to Beam Buckling 11.7 **Additional Comments on Beam Buckling** 11.8 Summary Chapter 11 Exercises Endnote (1) The Bending Slope Sign Convention Endnote (2) Combined Beam Axial and Lateral Loadings Endnote (3) Heaviside Step Function Additional Comments Endnote (4) Combined Bending and Torsional Loadings Endnote (5) Beams Continuous over Several Supports | 310
310
312
316
320
329
334
336
346
359
359
363
364
366 | | | 12 | Uniform Torsion of Beams | 368 | | | | 12.1 Introduction 12.2 The Stress Formulation for Uniform Torsion 12.3 Further Properties of the Prandtl Stress Function 12.4 The Membrane Analogy 12.5 Closed Form Beam Torsion Analytical Solutions 12.6 Open Form Uniform Beam Torsion Solutions 12.7 Summary Chapter 12 Exercises Endnote (1) A Comment on the Solution for a Circular Shaft with a Keyway Endnote (2) Orthogonality Endnote (3) A Separation of Variables Approach to Example 12.1 | 368
369
376
378
382
387
391
396
400
400 | | | 13 | Beam Torsion Approximate Solutions | 403 | | | | 13.1 Introduction 13.2 Open Cross-Section Beam Torsion 13.3 Closed Section Beam Torsion 13.4 Accuracy of the Uniform Torsion Theory 13.5 Beams Subjected to a Variable Torque 13.6 Summary Chapter 13 Exercises Endnote (1) Torsion Constants for Rolled and Extruded Beams Endnote (2) Warping Constraint Due to Varying Torque | 403
404
410
420
421
424
426
430
433 | | | Be | Beam Bending and Torsion Review Questions | | | | | Beam Shearing Stresses Due to Shearing Forces | 444 | | | | 14.1 Introduction14.2 Thin-Walled Open Cross-Sections14.3 Thin-Walled Open Cross-Section Example Problems | 444
444
448 | | | | 14.4
14.5 | The Open Section Shear Center
Shear Flows in Thin-Walled Closed Cross-Sections | 457
459 | |-----|------------------------------------|---|------------| | | 14.6 | Summary | 464 | | | | ter 14 Exercises | 469 | | | Endn | ote (1) The Shear Center as the Center of Twist | 473 | | Par | Part IV Work and Energy Principles | | | | | IV.1 | Preface | 475 | | | IV.2 | The Green-Gauss Theorem | 475 | | 15 | Work | and Potential Energy Principles | 479 | | | 15.1 | Introduction | 479 | | | | Work and Potential Energy | 481 | | | | Virtual Work and Virtual Potential Energy | 483 | | | 15.4 | The Variational Operator | 486 | | | 15.5 | The Principle of Virtual Work | 490 | | | 15.6 | Internal Virtual Work | 495 | | | 15.7 | Complementary Virtual Work | 497 | | | 15.8 | **Energy and Other Principles** | 502 | | | 15.9 | **Modifications for Temperature Changes** | 504 | | | | Summary | 506 | | | | ter 15 Exercises | 507 | | | | ote (1) Further Explanation of the Variational Operator | 510 | | | | ote (2) Proof That the Principle of Virtual Work Is a Sufficient | E11 | | | | ondition for Equilibrium | 514 | | | | ote (3) Proof of the Pairing of BCs for the Beam Fourth Order Bending | 516 | | | | quations and the Second Order Extension Equations | 310 | | | | ote (4) Derivation of the Uniform Torsion Beam Equations Using the | 518 | | | FI | inciple of Complementary Virtual Work | 510 | | Pa | rt V | Energy-Based Numerical Solutions | | | | V. 1 | Preface | 521 | | 16 | **Pre | ecursor Numerical Analyses** | 523 | | | 16.1 | Introduction | 523 | | | 16.2 | Numerical Methods of Note | 523 | | | 16.3 | Summary | 540 | | | | ter 16 Exercises | 542 | | 17 | Intro | duction to the Finite Element Method | 545 | | | 17.1 | Introduction | 545 | | | 17.2 | Generalized Coordinates | 546 | | | 17.3 | The Beam Bending Finite Element | 551 | | | 17.4 | The Bar and Spring Element Stiffness Matrix Equations | 556 | | | 17.5 | Assembling the System Matrix Equation | 558 | | | 17.6 | Solving the System Matrix Equation | 565 | | | 17.7 | Example Beam Frame and Grid Problems | 567 | | | 17.8 | More Extensive Example Problems | 574 | | | 17.9 | Summary | 581 | | | Chapter 17 Exercises Endnote (1) Distributed Coordinates Endnote (2) Accuracy of the Concentrated Load Approximation Endnote (3) The Reason for the Name "Generalized Coordinates" | 592
598
599
600 | |----|--|--| | 18 | Finite Element Truss Problems | 602 | | | 18.1 Introduction 18.2 The Rotated Bar Element 18.3 Equivalent Thermal Loads 18.4 Other Initial Strains 18.5 Enforced Deflections 18.6 Summary Chapter 18 Exercises Endnote (1) Substructuring in Static Analyses | 602
602
607
610
611
612
617
620 | | 19 | Basic Aspects of Multidimensional Finite Elements | 623 | | | 19.1 Introduction 19.2 A Rectangular Plane Stress Finite Element 19.3 A Triangular Plane Stress Element in Brief 19.4 Three-Dimensional Finite Elements 19.5 Refined Finite Elements of Simple Shapes 19.6 **The Finite Element Method with Time-Varying Loads** 19.7 Summary Chapter 19 Exercises Endnote (1) An Explanation for Rigid Body Motion-Induced False Strains Endnote (2) Reducing the Number of DOF in a Dynamic Analysis | 623
623
635
636
637
642
649
650
653 | | 20 | The Unit Load Method for Determinate Structures | 655 | | | 20.1 Introduction 20.2 External Complementary Virtual Work in the Unit Load Method 20.3 Internal CVW for Beam Bending and Extension 20.4 Internal Complementary Virtual Work for Beam Torsion 20.5 **Internal CVW for Beam Shearing** 20.6 Additional Illustrative Examples 20.7 **Examples of Using the ULM for Design Purposes** 20.8 **General Deflection Solutions** 20.9 **Large Radius Curved Beams** 20.10 Summary 20.11 Maxwell's Reciprocity Theorem Chapter 20 Exercises Endnote (1) ULM Limitations Endnote (2) Internal Complementary Virtual Work | 655
656
658
667
669
670
677
682
683
688
689
693 | | 21 | The Unit Load Method for Indeterminate Structures | 700 | | | 21.1 Introduction 21.2 Identifying Redundant Forces and Moments 21.3 The Coiled Spring Structural Elements 21.4 The Strategy of Releases and Reattachments 21.5 Example Problems | 700
700
704
707
711 | | | 21.7 | **Further Example Problems** Summary | 724
729 | |-------------|--|---|---| | | Chapt | ter 21 Exercises | 737 | | Par | rts IV a | and V Review Questions | 747 | | Pa | rt VI | Thin Plate Theory and Structural Stability | | | | VI.1 | Introduction | 757 | | 22 | Thin I | Plate Theory | 759 | | | 22.3
22.4
22.5
22.6
22.7
22.8
22.9
22.10
Chapt | Introduction The Plate Midplane The Plate Stress Resultants The Approximate Pattern for Plate Displacements The Small Deflection Thin Plate Bending Equation Thin Plate Boundary Conditions **Classical Small Deflection Plate Bending Solutions** **Plate Buckling and Its Uses** A Simple Plate Bending Finite Element Summary ser 22 Exercises | 759
760
761
763
766
770
773
777
781
788
788 | | 23 | | ote (1) The Second Finite Deflection Plate Equation c and Aeroelastic Instabilities | 791
792 | | | 23.3
23.4
23.5
23.6
23.7
23.8
Chapt
Endno | Introduction An Energy Formulation of the Beam Buckling Problem A Beam Buckling Finite Element Further Aspects of the Energy Formulation Types of Fluid–Structure Interaction Instabilities Airfoil Divergence Airfoil Flutter Matrix Iteration for Symmetric Matrices ser 23 Exercises ofte (1) Resonance ofte (2) Diagonalization and Functions of Matrices | 792
792
795
800
806
808
814
820
829
831
833 | | <i>Ap</i> , | | A: Additional Topics Integration of the Strains to Obtain Displacements Proof of the Symmetry of the Compliance Matrix Uniform Torsion Stress Resultants for Multiply Connected | 839
839
841 | | | A.4
A.5 | Cross-Sections The Uniform Torsion GDE for Multiply Connected Cross-Sections Calculation of the Twist per Unit Length of a Single Cell of an <i>N</i> -Cell | 846
848 | | Re_j | | Cross-Section B: Selected Answers to Exercises | 850
851
925
929 | | | | | |