

Mechanics of Materials

Ansel C. Ugural

CONTENTS

PREFACE vii

LIST OF SYMBOLS xix

Chapter 1 INTRODUCTION 1

- 1.1 Mechanics of Materials 2
- 1.2 Scope of the Book 3
- 1.3 Methods of Analysis 4
- 1.4 Engineering Design 5
- 1.5 Review of Static Equilibrium 6
- 1.6 Internal Force Resultants 10
- 1.7 Problem Formulation and Solution 13
- 1.8 Application to Simple Structures 15
 - Chapter Summary 26
 - References 27

Chapter 2 CONCEPT OF STRESS 28

- 2.1 Introduction 29
- 2.2 Internal Axial Forces 29
- 2.3 Normal Stress 31
- 2.4 Bearing Stress in Connections 37
- 2.5 Shearing Stress 38
- 2.6 Stresses in Simple Structures 43
- 2.7 Allowable Stress and Factor of Safety 52
- 2.8 Design of Bars for Axial Loading 56
- 2.9 Case Studies 60
- 2.10 Stress under General Loading 68
 - Chapter Summary 77
 - References 78

Chapter 3 STRAIN AND MATERIAL PROPERTIES 79

- 3.1 Introduction 80

- 3.2 Deformation 80
- 3.3 Strain 81
- 3.4 Components of Strain 84
- 3.5 Materials 89
- 3.6 Stress-Strain Diagrams 90
- 3.7 True Stress and True Strain 97
- 3.8 Elastic versus Plastic Behavior 98
- 3.9 Hooke's Law 99
- 3.10 Poisson's Ratio 102
- 3.11 Generalized Hooke's Law 108
- 3.12 Strain Energy 113
- *3.13 Impact Strength 115
- *3.14 Fatigue 116
- 3.15 Permanent Deformation 119
- 3.16 General Properties of Materials 121
- *3.17 Selecting Materials 122
 - Chapter Summary 127
 - References 129

Chapter 4 AXIALLY LOADED MEMBERS 130

- 4.1 Introduction 131
- 4.2 Deformation of Axially Loaded Members 131
- 4.3 Statically Indeterminate Structures 143
- 4.4 Method of Superposition 147
- 4.5 Thermal Deformation and Stress 148
- 4.6 Stresses on Inclined Planes 156
- 4.7 Saint-Venant's Principle 159
- 4.8 Stress Concentrations 160
- *4.9 Ductility and Design 164
- *4.10 Plastic Deformation and Residual Stress 165

Chapter Summary	172
References	173

Chapter 5 TORSION 174

5.1 Introduction	175
5.2 Deformation of a Circular Shaft	175
5.3 The Torsion Formula	178
5.4 Axial and Transverse Shear Stresses	180
5.5 Stresses on Inclined Planes	183
5.6 Angle of Twist	188
5.7 Statically Indeterminate Shafts	196
5.8 Design of Circular Shafts	202
5.9 Stress Concentrations	206
*5.10 Inelastic Torsion of Circular Shafts	211
*5.11 Torsion of Noncircular Solid Bars	215
*5.12 Thin-Walled Hollow Members	218
Chapter Summary	228
References	230

Chapter 6 SHEAR AND MOMENT IN BEAMS 231

6.1 Introduction	232
6.2 Classification of Beams	232
6.3 Calculation of Beam Reactions	233
6.4 Shear Force and Bending Moment	238
6.5 Load, Shear, and Moment Relationships	243
6.6 Shear and Moment Diagrams	245
*6.7 Discontinuity Functions	259
Chapter Summary	268
References	270

Chapter 7 STRESSES IN BEAMS 271

7.1 Introduction	272
PART A Pure Bending 273	
7.2 Beam Deformation in Pure Bending	273
7.3 Assumptions of Beam Theory	275
7.4 Normal Strain in Beams	276
7.5 Normal Stress in Beams	280
7.6 Stress Concentrations in Bending	285
PART B Shear and Bending 292	
7.7 Shear Stresses in Beams	292

7.8 Shear Stress Distribution in Rectangular Beams	297
7.9 Shear Stresses in Beams of Circular Cross Section	299
7.10 Shear Stress Distribution in Flanged Beams	300
7.11 Comparison of Shear and Bending Stresses	304
7.12 Design of Prismatic Beams	308
7.13 Design of Beams of Constant Strength	311

PART C Special Topics 321

*7.14 Composite Beams	321
*7.15 Reinforced Concrete Beams	325
*7.16 Unsymmetric Bending	327
*7.17 Shear Center	332
*7.18 Inelastic Bending	334
*7.19 Curved Beams	341
Chapter Summary	356
References	359

Chapter 8 TRANSFORMATION OF STRESS AND STRAIN 360

8.1 Introduction	361
8.2 Plane Stress	361
8.3 Principal Stresses	367
8.4 Maximum Shear Stress	368
8.5 Mohr's Circle for Plane Stress	370
8.6 Absolute Maximum Shear Stress	383
8.7 Principal Stresses for a General State of Stress	384
8.8 Thin-Walled Pressure Vessels	385
*8.9 Thick-Walled Pressure Vessels	393
*8.10 Plane Strain	402
8.11 Mohr's Circle for Plane Strain	405
*8.12 Measurement of Strain; Strain Rosette	409
*8.13 Relation Involving E , ν , and G	412
Chapter Summary	416
References	418

Chapter 9 COMBINED LOADINGS AND FAILURE CRITERIA 419

9.1 Introduction	420
------------------	-----

PART A Combined Stresses 421	*11.7 Design of Columns for Centric Loading 564
9.2 Axial and Torsional Loads 421	*11.8 Design of Columns for Eccentric Loading 569
9.3 Direct Shear and Torsional Loads: Helical Springs 427	Chapter Summary 574
9.4 Axial, Transverse, and Torsional Loads 431	References 575
9.5 Transverse Shear and Bending Moment Loads: Principal Stresses in Beams 437	
9.6 Eccentric Axial Loads 440	
PART B Failure Theories in Design 450	Chapter 12 ENERGY METHODS AND IMPACT 576
9.7 Material Failure 450	12.1 Introduction 577
9.8 Yield Criteria for Ductile Materials 451	12.2 Strain Energy under Axial Loading 577
9.9 Fracture Criteria for Brittle Materials 454	12.3 Strain Energy in Circular Shafts 580
*9.10 Design of Transmission Shafts 460	12.4 Strain Energy in Beams 581
Chapter Summary 468	12.5 Strain Energy for a General State of Stress 584
References 470	12.6 Conservation of Energy 589
Chapter 10 DEFLECTIONS OF BEAMS 471	12.7 Displacement under a Single Load by the Work-Energy Method 590
10.1 Introduction 472	*12.8 Displacements by Castigliano's Theorem 593
10.2 The Elastic Curve 472	*12.9 Unit-Load Method 599
10.3 Boundary Conditions 473	*12.10 Statically Indeterminate Structures 602
10.4 Method of Integration 476	12.11 Impact Loading 609
*10.5 Use of Discontinuity Functions 487	12.12 Longitudinal and Bending Impact 610
10.6 Method of Superposition 493	Chapter Summary 621
10.7 Statically Indeterminate Beams 496	References 623
10.8 Statically Indeterminate Beams—Method of Integration 497	
10.9 Statically Indeterminate Beams—Method of Superposition 507	
*10.10 Moment-Area Method 514	
*10.11 Statically Indeterminate Beams—Moment-Area Method 525	
*10.12 Continuous Beams 527	Chapter 13 FINITE ELEMENT ANALYSIS 624
Chapter Summary 535	13.1 Introduction 625
References 536	*13.2 The Bar Element 626
Chapter 11 BUCKLING OF COLUMNS 537	*13.3 Two-Dimensional Bar Element 627
11.1 Introduction 538	*13.4 Axial Force in the Bar Element 630
11.2 Stability of Structures 538	*13.5 Formulation of the Finite Element Method 631
11.3 Pin-Ended Columns 540	*13.6 Beam Elements 644
11.4 Columns with Other End Conditions 542	Chapter Summary 652
11.5 Critical Stress: Classification of Columns 547	References 653
*11.6 Eccentric Loaded Columns and the Secant Formula 558	
	Appendix A PROPERTIES OF AREAS 655
	A.1 Centroid of an Area 655
	A.2 Moments of Inertia and Radius of Gyration 658

A.3 Parallel-Axis Theorem 660	B.12 Properties of Steel L Shapes, Angles with Unequal Legs 684
A.4 Principal Moments of Inertia 662	B.13 Properties of Structural Lumber 686
Appendix B TABLES 667	B.14 Deflections and Slopes of Beams 687
B.1 Principal SI Units Used in Mechanics 668	B.15 Reactions and Deflections of Statically Indeterminate Beams 689
B.2 SI Prefixes 668	
B.3 Conversion Factors between U.S. Customary and SI Units 669	
B.4 Properties of Selected Engineering Materials 670	
B.5 Materials and Selected Members of Each Class 672	
B.6 Properties of Areas 674	
B.7 Properties of Selected Steel Pipe and Tubing 675	
B.8 Properties of Steel W Shapes, Wide-Flange Sections 676	
B.9 Properties of Steel S Shapes, American Standard I-Beams 678	
B.10 Properties of Steel C Shapes, American Standard Channels 680	
B.11 Properties of Steel L Shapes, Angles with Equal Legs 682	
	Appendix C MATRIX ALGEBRA 690
	*C.1 Definition of a Matrix 690
	*C.2 Determinant of a Matrix 691
	*C.3 Matrix Operations 693
	*C.4 Simultaneous Linear Equations 695
	Appendix D FUNDAMENTALS OF ENGINEERING EXAMINATION 697
	ANSWERS TO SELECTED EVEN-NUMBERED PROBLEMS 698
	INDEX 711