BOTKIN & KELLER

Sixth Edition

ENVIRONMENTAL SCIENCE

Earth as a Living Planet

CONTENTS

CASE STUDY Shrimp, Mangroves, and Pickup Trucks: Local and Global Connections Reveal Major Environmental Concerns 2

- 1.1 Major Themes of Environmental Science 3
- A CLOSER LOOK 1.1
 A Little Environmental History 4
- 1.2 Human Population Growth 4
 The John Eli Miller Family 4
 Our Rapid Population Growth 5
 African Famines 5
- A CLOSER LOOK 1.2
 The Black Death 6
- 1.3 Sustainability and Carrying Capacity 7
 Sustainability: The Environmental Objective 7
 Moving Toward Sustainability: Some Criteria 8
- A Closer Look 1.3
 Carrying Capacity of the Chinook Salmon 9
 Carrying Capacity of Earth 9
- 1.4 A Global Perspective 10
- 1.5 An Urban World 10
- 1.6 People and Nature 11
- 1.7 Science and Values 12
 Precautionary Principle 13
 Placing a Value on the Environment 13

Critical Thinking Issue How Can We Preserve the World's Coral Reefs? 14

Summary 15

REEXAMINING THEMES AND ISSUES 16 Key Terms 16 Study Questions 16 Further Reading 17

2

Science as a Way of Knowing: Critical Thinking about the Environment 18

CASE STUDY Birds at Mono Lake: Applying Science to Solve an Environmental Problem 19

- 2.1 Understanding What Science Is (and What It Isn't) 20 Science as a Way of Knowing 20
- A CLOSER LOOK 2.1
 A Brief History of Science 21
 Disprovability 22

A CLOSER LOOK 2.2

The Case of the Mysterious Crop Circles 23

Assumptions of Science 23
The Nature of Scientific Proof 24

- 2.2 Measurements and Uncertainty 25
 A Word about Numbers in Science 25
 Dealing with Uncertainties 25
 Accuracy and Precision 26
- 2.3 Observations, Facts, Inferences, and Hypotheses 26
- A CLOSER LOOK 2.3

Measurement of Carbon Stored in Vegetation 27

- 2.4 A Word about Creativity and Critical Thinking 29
- 2.5 Misunderstandings about Science 29
 Theory in Science and Language 29
 Science and Technology 29
 Science and Objectivity 30
 Science, Pseudoscience, and Frontier Science 30
- 2.6 Environmental Questions and the Scientific Method 30
 An Example: The California Condor 31
 Some Alternatives to Direct Experimentation 32
 Historical Evidence 32
 Modern Catastrophes and Disturbances as
 Experiments 32
- 2.7 Science and Decision Making 33
- 2.8 Learning about Science 33
- A CLOSER LOOK 2.4
 Evaluating Media Coverage 34
- 2.9 Science and Media Coverage 34 Summary 34

Critical Thinking Issue How Do We Decide What to Believe about Environmental Issues? 35

REEXAMINING THEMES AND ISSUES 36 Key Terms 36 Study Questions 36 Further Reading 37

The Big Picture: Systems of Change 38

CASE STUDY Amboseli National Reserve 39

- 3.1 Systems and Feedback 41
 System Defined 41
 Feedback 42
- 3.2 Exponential Growth 43

WORKING IT OUT 3.1 44

3.3 Environmental Unity 45
An Urban Example 45
A Forest Example 45

- 3.4 Uniformitarianism 46
- 3.5 Changes and Equilibrium in Systems 47

WORKING IT OUT 3.2 48

- 3.6 Earth and Life 49
- 3.7 Earth as a Living System 49
- 3.8 Ecosystems 50
 The Nature of Ecosystems 50
 The Gaia Hypothesis 50
- · 3.9 Why Solving Environmental Problems Is Often Difficult 51

CRITICAL THINKING ISSUE Is the Gala Hypothesis Science? 52

Summary 53

REEXAMINING THEMES AND ISSUES 53 Key Terms 54
Study Questions 54 Further Reading 54

The Human Population and the Environment 55

CASE STUDY Death in Indonesia from the Great Tsunami of 2004 56

4.1 How Populations Change Over Time: Basic Concepts of Population Dynamics 57
Basic Concepts 57
Age Structure 57

WORKING IT OUT 4.1 Forecasting Population Change 58

- 4.2 Kinds of Population Growth 59
 Exponential Growth 59
 A Brief History of Human Population Growth 59
- A CLOSER LOOK 4.1

 Growth of the Human Population 61
- A CLOSER LOOK 4.2
 How Many People Have Lived on Earth? 62
- 4.3 Present Human Population Rates of Growth 62
- 4.4 Projecting Future Population Growth 62
 Exponential Growth and Doubling Time 62
 The Logistic Growth Curve 63
 Forecasting Human Population Growth Using the Logistic Curve 64
- 4.5 The Demographic Transition 64
- 4.6 Population and Technology 64
- 4.7 The Human Population, the Quality of Life, and the Human Carrying Capacity of Earth 66
 Potential Effects of Medical Advances on Demographic

Transition 66

A CLOSER LOOK 4.3

The Prophecy of Malthus 67

Human Death Rates and the Rise of Industrial Societies 67 Longevity and Its Effect on Population Growth 69

4.8 Limiting Factors 70
Basic Concepts 70

4.9 How Can We Achieve Zero Population Growth? 70 Age of First Childbearing 70

CRITICAL THINKING ISSUE How Many People Can Earth Support? 71

Birth Control: Biological and Societal 72 National Programs to Reduce Birth Rates 72

Summary 72

REEXAMINING THEMES AND ISSUES 73 Key Terms 73
Study Questions 74 Further Reading 74

The Biogeochemical Cycles 75

CASE STUDY Lake Washington 76

- 5.1 How Chemicals Cycle 77
 Biogeochemical Cycles 77
- A CLOSER LOOK 5.1
 Matter and Energy 78
 Chemical Reactions 79
- A CLOSER LOOK 5.2
 A Biogeochemical Cycle 81
- 5.2 Environmental Questions and Biogeochemical Cycles 81
- 5.3 Biogeochemical Cycles and Life: Limiting Factors 82
- 5.4 General Concepts Central to Biogeochemical Cycles 83
- 5.5 The Geologic Cycle 83
 The Tectonic Cycle 83
 The Hydrologic Cycle 84
 The Rock Cycle 86
- 5.6 Biogeochemical Cycling in Ecosystems 88
 Ecosystem Cycles of a Metal and a Nonmetal 89
 Chemical Cycling and the Balance of Nature 89
- 5.7 Some Major Global Chemical Cycles 90 The Carbon Cycle 90
 - A CLOSER LOOK 5.3
 Photosynthesis and Respiration 92
 The Nitrogen Cycle 94

The Phosphorus Cycle 95
Summary 97

CRITICAL THINKING ISSUE How Are Human Activities Affecting the Nitrogen Cycle? 98

REEXAMINING THEMES AND ISSUES 99 Key Terms 99
Study Questions 100 Further Reading 100

Ecosystems and Ecosystem Management 101

CASE STUDY The Acorn Connection 102

6.1 The Ecosystem: Sustaining Life on Earth 104
Basic Characteristics of Ecosystems 105
Ecological Communities and Food Chains 105

A CLOSER LOOK 6.1

Hot Spring Ecosystems in Yellowstone National Park 106

- 6.2 The Community Effect 109
- 6.3 How Do You Know When You Have Found an Ecosystem? 112
- 6.4 Ecosystem Management 113

CRITICAL THINKING ISSUE How Are the Borders of an Ecosystem Defined? 113

Summary 114

REEXAMINING THEMES AND ISSUES 114 Key Terms 115
Study Questions 115 Further Reading 115

CASE STUDY Grizzly Bears and Emperor Penguins 117

- 7.1 What Is Biological Diversity? 118
- 7.2 Biological Evolution 118

 Mutation 118

 Natural Selection 119

 Geographic Isolation and Migration 119

A CLOSER LOOK 7.1

Natural Selection: Mosquitoes and the Malaria Parasite 120 Genetic Drift 121

Evolution as a Game 121

7.3 Basic Concepts of Biological Diversity 122

- 7.4 The Evolution of Life on Earth 122
- 7.5 The Number of Species on Earth 126
- 7.6 Why Are There So Many Species? 126
 Interactions between Species 126
 The Competitive Exclusion Principle 129
- 7.7 Niches: How Species Coexist 129
 Professions and Places: The Ecological Niche and the Habitat 129
 Measuring Niches 131
 Symbiosis 131
 Predation and Parasitism 132
- 7.8 Environmental Factors That Influence Diversity 132

CRITICAL THINKING ISSUE
Why Preserve Biodiversity? 135

7.9 Genetic Engineering and Some New Issues about Biological Diversity 136

Environmental Issues as Information Issues 136 Summary 136

REEXAMINING THEMES AND ISSUES 137 Key Terms 137
Study Questions 138 Further Reading 138

CASE STUDY Be Careful Where You Put Unwanted Pets: Pythons in the Everglades 140

- 8.1 Why Were Introductions of New Species into Europe So Popular Long Ago? 141
- 8.2 Wallace's Realms: Biotic Provinces 141
- 8.3 Biomes 142
- 8.4 Geographic Patterns of Life within a Continent 145
- A CLOSER LOOK 8.1
 A Biogeographical Cross Section of North America 146

8.6 Biogeography and People 149

- 8.5 Island Biogeography 147
- 8.7 Earth's Biomes 150
- 8.8 The Geography of Life on the Planet Earth 152
 Tundra 152
 Taiga, or Boreal Forests 152
 Temperate Deciduous Forests 153
 Temperate Rain Forests 153

Temperate Woodlands 154
Temperate Shrublands 154

Temperate Grasslands 154
Tropical Rain Forests 155

Tropical Seasonal Forests and Savannas 156

Deserts 156

Wetlands 156
Freshwaters 157
Intertidal Areas 158
Open Ocean 159
Benthos 159
Upwellings 159
Hydrothermal Vents 159
Summary 159

CRITICAL THINKING ISSUE Escape of an Exotic Species 160

REEXAMINING THEMES AND ISSUES 161 Key Terms 162 Study Questions 162 Further Reading 162

Biological Productivity and Energy Flow 163

CASE STUDY Can the World Produce Enough Food for Africa? 164

- 9.1 How Much Can We Grow? 165
- 9.2 Biological Production 165
 Two Kinds of Biological Production 165

WORKING IT OUT 9.1 166

WORKING IT OUT 9.2 167

Gross and Net Production 167

9.3 Energy Flow 168

WORKING IT OUT 9.3 168

- 9.4 The Ultimate Limit on the Abundance of Life 169
 The Laws of Thermodynamics 169
 Energy Efficiency and Transfer Efficiency 170
- A CLOSER LOOK 9.1
 The Second Law of Thermodynamics 171
- A CLOSER LOOK 9.2
 Ecological Efficiencies 172
- 9.5 Some Examples of Energy Flow 172
 Energy Flow in an Old-Field Food Chain 172
 Energy Flow in a Stream or River 172

CRITICAL THINKING ISSUE Should People Eat Lower on the Food Chain? 173

Energy Flow in Ocean Ecosystems 174 Chemosynthetic Energy Flow in the Ocean 174 Summary 175

REEXAMINING THEMES AND ISSUES 175 Key Terms 176 Study Questions 176 Further Reading 176

10

Ecological Restoration 177

CASE STUDY The Hands That Rock the Cradle of Civilization: Demise and Possible Restoration of the Tigris-Euphrates Marshlands 178

10.1 Restore to What? 178

The Balance of Nature 178
The Boundary Waters Canoe Area Wilderness:
An Example of the Naturalness of Change 179
Goals of Restoration: What Is "Natural" 7 180

- 10.2 What Needs to Be Restored? 181
 Wetlands, Rivers, and Streams 181
 Prairie Restoration 182
- 10.3 When Nature Restores Itself: The Process of Ecological Succession 182
- A CLOSER LOOK 10.1

An Example of Forest Secondary Succession 183
Patterns in Succession 184
General Patterns of Succession 185

- 10.4 Succession and Chemical Cycling 186
- 10.5 Species Change in Succession: Do Early-Successional Species Prepare the Way for Later Ones? 187
 Facilitation 188
 Interference 188
- A CLOSER LOOK 10.2

Changes in Chemical Cycling During a Disturbance 189

Life History Differences 189 Chronic Patchiness 189

CRITICAL THINKING ISSUE How Can We Evaluate Constructed Ecosystems? 190

10.6 Applying Ecological Knowledge to Restore Heavily
Damaged Lands and Ecosystems 191
Summary 191

REEXAMINING THEMES AND ISSUES 192 Key Terms 193
Study Questions 193 Further Reading 193

Producing Enough Food for the World: How Agriculture Depends on Environment 194

CASE STUDY Food for China 195

11.1 Can We Feed the World? 196

- 11.2 How We Starve 198
- 11.3 What We Eat and What We Grow 200 Crops 200 Aquaculture 202
- 11.4 An Ecological Perspective on Agriculture 203
- 11.5 Limiting Factors 204
- 11.6 The Future of Agriculture 205
- 11.7 Increasing the Yield per Acre 206
 The Green Revolution 206
- A CLOSER LOOK 11.1

Traditional Farming Methods 207 Improved Irrigation 208

- 11.8 Organic Farming 208
- 11.9 Alternatives to Monoculture 208
- 11.10 Eating Lower on the Food Chain 208
- A CLOSER LOOK 11.2

Potential Future Advances in Agriculture 209

- 11.11 Genetically Modified Food: Biotechnology, Farming, and Environment 211
- 11.12 Climate Change and Agriculture 212

CRITICAL THINKING ISSUE Will There Be Enough Water to Produce Food for a Growing Population? 213

Summary 214

REEXAMINING THEMES AND ISSUES 215 Key Terms 216 Study Questions 216 Further Reading 216

Effects of Agriculture on the Environment 217

CASE STUDY Clean-Water Farms 218

- 12.1 How Agriculture Changes the Environment 219
- 12.2 The Plow Puzzle 219
- 12.3 Our Eroding Soils 219
- 12.4 Where Eroded Soil Goes: Sediments Also Cause Environmental Problems 221
- A CLOSER LOOK 12.1

Soils 222

Making Soils Sustainable 223 Contour Plowing 223 No-Till Agriculture 223

12.5 Controlling Pests 224

- 12.6 The History of Pesticides 224
- 12.7 Integrated Pest Management 225
 Monitoring Pesticides in the Environment 226
- 12.8 Genetically Modified Crops 227
- A CLOSER LOOK 12.2 DDT 228

New Hybrids 229
The Terminator Gene 229
Transfer of Genes from One Major Form of Life
to Another 229

12.9 Grazing on Rangelands: An Environment Benefit or Problem? 230

Traditional and Industrialized Use of Grazing and Rangelands 231

The Biogeography of Agricultural Animals 231
Carrying Capacity of Grazing Lands 231

- 12.10 Desertification: Regional Effects and Global Impact 232
 What Causes Deserts? 232
 Preventing Desertification 233
- 12.11 Does Farming Change the Biosphere? 233

CRITICAL THINKING ISSUE Should Rice Be Grown in a Dry Climate? 234

Summary 235

REEXAMINING THEMES AND ISSUES 236 Key Terms 237 Study Questions 237 Further Reading 237

Forests, Parks, and Landscapes 238

CASE STUDY Wildfires Raise Questions about How to Manage Parks and Preserves in the Twenty-First Century 239

- 13.1 Modern Conflicts over Forestland and Forest Resources 241
- 13.2 The Life of a Tree 242 How a Tree Grows 242 Tree Niches 243
- 13.3 A Forester's View of a Forest 245
- 13.4 Approaches to Forest Management 245
 Clear-cutting 245
 Experimental Tests of Clear-Cutting 246
 Plantation Forestry 246
- 13.5 Sustainable Forestry 247
 What Is Forest Sustainability? 247
 Certification of Forest Practices 247
- 13.6 A Global Perspective on Forests 248
 World Forest Area, Global Production,
 and Consumption of Forest Resources 248

13.7 Deforestation: A Global Dilemma 250
History of Deforestation 251
Causes of Deforestation 251
The World Firewood Shortage 251
Indirect Deforestation 252

A CLOSER LOOK 13.1
Community Forestry 253

13.8 Parks, Nature Preserves, and Wilderness 253
Parks and Preserves as Islands 254

A CLOSER LOOK 13.2

A Brief History of Parks 255

Conflicts in Managing Parks 255
How Much Land Should Be in Parks? 256
Conserving Wilderness 256
Conflicts in Managing Wilderness 257

CRITICAL THINKING ISSUE Can Tropical Forests Survive in Bits and Pieces? 258

Summary 258

REEXAMINING THEMES AND ISSUES 259 Key Terms 260 Study Questions 260 Further Reading 260

Wildlife, Fisheries, and Endangered Species 261

CASE STUDY Threats to Major World Fisheries 262

14.1 Introduction 263

14.2 Traditional Single-Species Wildlife Management 263

A CLOSER LOOK 14.1

Reasons for the Conservation of Endangered Species (and of All Life on Earth) 264

More about the Logistic Growth Curve 266
An Example of Problems with the Logistic Curve 267

14.3 Stories Told by the Grizzly Bear and the Bison: Wildlife Management Questions That Require New Approaches 267

The Grizzly Bear 267
The American Bison 269

14.4 Improved Approaches to Wildlife

Management 270

Time Series and Historical Range of Variation 270
Age Structure as Useful Information 271
Harvests as an Estimate of Numbers 272

14.5 Fisheries 272

A CLOSER LOOK 14.2

Conservation of Whales and Other Marine Mammals 273

The Decline of Fish Populations 276
Can Fishing Ever Be Sustainable? 279

14.6 The Current Status of Endangered Species 280

14.7 How a Species Becomes Endangered and Extinct 280

A CLOSER LOOK 14.3

Causes of Extinction 283

14.8 How People Cause Extinctions and Affect Biological Diversity 284

The Good News: Species Whose Status Has Improved 284 Can a Species Be Too Abundant? If So, What Do We Do? 284

14.9 The Kirtland's Warbler and Environmental Change 285

14.10 Ecological Islands and Endangered Species 285

14.11 Using Spatial Relationships to Conserve Endangered Species 286Summary 287

CRITICAL THINKING ISSUE Should Wolves Be Reestablished in the Adirondack Park? 288

REEXAMINING THEMES AND ISSUES 289 Key Terms 290 Study Questions 290 Further Reading 290

15

Environmental Health, Pollution, and Toxicology 291

CASE STUDY Demasculinization and Feminization of Frogs in the Environment 292

15.1 Some Basics 293
Terminology 294
Measuring the Amount of Pollution 295

15.2 Categories of Pollutants 295 Infectious Agents 295

A CLOSER LOOK 15.1

Sudbury Smelters: A Point Source 296

Toxic Heavy Metals 297
Toxic Pathways 297
Organic Compounds 299
Persistent Organic Pollutants 299

A CLOSER LOOK 15.2

Mercury and Minamata, Japan 300
Hormonally Active Agents (HAAs) 301
Radiation 301

A CLOSER LOOK 15.3

Dioxin: The Big Unknown 302

Thermal Pollution 303

Particulates 303
Asbestos 303
Electromagnetic Fields 305
Noise Pollution 305
Voluntary Exposure 306

15.3 General Effects of Pollutants 306
Concept of Dose and Response 307
Ecological Gradients 310

15.4 Risk Assessment 310 Summary 311

CRITICAL THINKING ISSUE Is Lead in the Urban Environment Contributing to Antisocial Behavior? 312

REEXAMINING THEMES AND ISSUES 313 Key Terms 314 Study Questions 314 Further Reading 314

Natural Disasters and Catastrophes 315

CASE STUDY Hurricane Katrina, Worst Natural Catastrophe in U.S. History 316

- 16.1 Hazards, Disasters, and Catastrophes 320
- A Closer Look 16.1

 Hurricane Form and Process 321
- A Closer Look 16.2
 La Conchita Landslide, 2005 325
- 16.2 Disasters and Catastrophes: Taking a Historic Point of View 326
- 16.3 Fundamental Concepts Related to Natural Hazards 326
- 16.4 Natural Processes Have Natural Service Functions 326
- 16.5 Hazards Are Predictable 328
- A Closer Look 16.3 Indonesian Tsunami 330
- 16.6 Linkages Exist between Hazards and between the Physical and Biological Environments 334
- 16.7 Hazards That Previously Produced Disasters Are Now Producing Catastrophes 335 Land Use Transformation and Natural Hazards 336
- 16.8 Risk from Hazards Can Be Estimated 337
- 16.9 Adverse Effects of Hazards Can Be Minimized 337
 Active versus Reactive Response 337
 Impact and Recovery from Disasters
 and Catastrophes 338
 Perceiving, Avoiding, and Adjusting to Hazards 339

CRITICAL THINKING ISSUE How Should New Orleans Be Rebuilt? 340

16.10 What Does the Future Hold with Respect to Disasters

and Catastrophes? 342

Summary 342

REEXAMINING THEMES AND ISSUES 343 Key Terms 343
Study Questions 343 Further Reading 344

CASE STUDY National Energy Policy: From Coastto-Coast Energy Crisis to Promoting Energy Independence 346

- 17.1 Outlook for Energy 347
 Energy Crises in Ancient Greece and Rome 347
 Energy Today and Tomorrow 348
- 17.2 Energy Basics 348
- 17.3 Energy Efficiency 350
- A CLOSER LOOK 17.1 Energy Units 351
- 17.4 Energy Sources and Consumption 352
 Fossil Fuels and Alternative Energy Sources 352
 Energy Consumption in the United States Today 352
- 17.5 Energy Conservation, Increased Efficiency, and Cogeneration 354
 Building Design 355
 Industrial Energy 355
 Automobile Design 355
 Values, Choices, and Energy Conservation 355
- 17.6 Energy Policy 356
 Hard Path versus Soft Path 357
 Energy for Tomorrow 357
 Integrated, Sustainable Energy Management 359
 Summary 359

CRITICAL THINKING ISSUE Is There Enough Energy to Go Around? 361

REEXAMINING THEMES AND ISSUES 362 Key Terms 363 Study Questions 363 Further Reading 363

18
Fossil Fuels and the Environment 364

CASE STUDY Peak Oil: Myth or Reality 365

18.1 Fossil Fuels 366

18.2 Crude Oil and Natural Gas 366

Petroleum Production 367
Oil in the Twenty-First Century 368
Natural Gas 370
Coal-Bed Methane 370
Methane Hydrates 371
Environmental Effects of Oil and Natural Gas 371

A CLOSER LOOK 18.1

The Arctic National Wildlife Refuge: To Drill or Not to Drill 373

18.3 Coal 375

Coal Mining and the Environment 376

A CLOSER LOOK 18.2

The Trapper Mine 378

Transport of Coal 380 The Future of Coal 380 Allowance Trading 381

18,4 Oil Shale and Tar Sands 381 Oil Shale 381 Tar Sands 381

CRITICAL THINKING ISSUE Should the Gasoline Tax Be Raised? 382

Summary 383

REEXAMINING THEMES AND ISSUES 383 Key Terms 384 Study Questions 384 Further Reading 384

19

Alternative Energy and the Environment 385

CASE STUDY Spirit Lake Community School District in Iowa, Going with the Wind 386

19.1 Introduction to Alternative Energy Sources 386

19.2 Solar Energy 388
 Solar Collectors 389
 Photovoltaics 390
 Power Towers 392
 Luz Solar Electric-Generating System 392
 Solar Energy and the Environment 392

19,3 Hydrogen 392

A CLOSER LOOK 19.1

Fuel Cells—An Attractive Alternative 394

19.4 Water Power 395
Small-Scale Systems 395
Water Power and the Environment 396

19.5 Tidal Power 396

19.6 Wind Power 396
Basics of Wind Power 396

Wind Power and the Environment 398 Future of Wind Power 399

19.7 Biofuels 399

Sources of Biofuel 399
Biofuel and the Environment 400
Future of Biofuel 401

19.8 Geothermal Energy 401
Geothermal Systems 401
Geothermal Energy and the Environment 402
Future of Geothermal Energy 402

19.9 Policy Issues 403 Summary 403

CRITICAL THINKING ISSUE How Can We Evaluate Alternative Energy Sources? 404

REEXAMINING THEMES AND ISSUES 405 Key Terms 405 Study Questions 405 Further Reading 406

20

Nuclear Energy and the Environment 407

CASE STUDY Nuclear Energy and Public Opinion 408

20.1 Nuclear Energy 409 Fission Reactors 409

A CLOSER LOOK 20.1 Radioactive Decay 410

Sustainability and Nuclear Power 414 Pebble-Bed Reactors 414 Fusion Reactors 415

20.2 Nuclear Energy and the Environment 417
Problems with Nuclear Power 417

A CLOSER LOOK 20.2

Radiation Units and Doses 418

Effects of Radioisotopes 420 Radiation Doses and Health 420

20.3 Nuclear Power Plant Accidents 422 Three Mile Island 423 Chernobyl 423

20.4 Radioactive-Waste Management 425 Low-Level Radioactive Waste 425 Transuranic Waste 425 High-Level Radioactive Waste 426

20.5 The Future of Nuclear Energy 427 Summary 427

CRITICAL THINKING ISSUE What is the Future of Nuclear Energy? 428

REEXAMINING THEMES AND ISSUES 430 Key Terms 430 Study Questions 431 Further Reading 431

21

Water Supply, Use, and Management 432

CASE STUDY What Is the Value of Clean Water to New York City? 433

21.1 Water 434

A Brief Global Perspective 434 Groundwater and Streams 436 Interactions between Surface Water and Groundwater 437

21.2 Water Supply: A U.S. Example 438
Precipitation and Runoff Patterns 438
Droughts 439
Groundwater Use and Problems 439
Desalination as a Water Source 440

21.3 Water Use 440
Transport of Water 441
Some Trends in Water Use 441

21,4 Water Conservation 444
Agricultural Use 444
Domestic Use 445
Industry and Manufacturing Use 445
Perception and Water Use 445

A CLOSER LOOK 21,1

Water Supplies for Many Urban Areas in the United States Are in Trouble 446

21.5 Sustainability and Water Management 446
Sustainable Water Use 446
Groundwater Sustainability 446
Water Management 447
A Master Plan for Water Management 447
Water Management and the Environment 448

21.6 Wetlands 448.

Natural Service Functions of Wetlands 449 Restoration of Wetlands 450

21.7 Dams and the Environment 450 Canals 451 Removal of Dams 451

A CLOSER LOOK 21.2 Three Gorges Dam 452

- 21.8 Channelization and the Environment 453
- 21.9 The Colorado River: Water Resources Management and the Environment 453
- 21.10 Global Water Shortage Linked to Food Supply 458 Summary 458

CRITICAL THINKING ISSUE How Wet Is a Wetland? 459

REEXAMINING THEMES AND ISSUES 460 Key Terms 461 Study Questions 461 Further Reading 461

22

Water Pollution and Treatment 462

CASE STUDY North Carolina's Bay of Pigs 463

- 22.1 Water Pollution 464
- 22.2 Biochemical Oxygen Demand (BOD) 465
- 22.3 Waterborne Disease 467
 Outbreak in Milwaukee, Wisconsin 468
 Fecal Coliform Bacteria 468
 Outbreak in Walkerton, Ontario 469
- 22.4 Nutrients 469

Medical Lake: An Example 469 Eutrophication 470

22.5 Oil 471

Exxon Valdez: Prince William Sound, Alaska 471

A CLOSER LOOK 22.1

Cultural Eutrophication in the Gulf of Mexico 472

Jessica: Galápagos Islands 474

- 22.6 Sediment 474
- 22.7 Acid Mine Drainage 475
- 22.8 Surface Water Pollution 475
- 22.9 Groundwater Pollution 476
 Principles of Groundwater Pollution: An Example 477

A CLOSER LOOK 22,2

Water for Domestic Use: How Safe Is It? 478
Long Island, New York 478

- 22.10 Wastewater Treatment 479
 Septic-Tank Disposal Systems 479
 Wastewater Treatment Plants 480
- 22.11 Land Application of Wastewater 482
 The Wastewater Renovation and Conservation
 Cycle 482

A CLOSER LOOK 22.3

Boston Harbor: Cleaning Up a National Treasure 483 Wastewater and Wetlands 485

- 22.12 Water Reuse 486
- 22.13 Water Pollution and Environmental Law 487 Summary 487

CRITICAL THINKING ISSUE How Can Polluted Waters Be Restored? 489

REEXAMINING THEMES AND ISSUES 490 Key Terms 491 Study Questions 491 Further Reading 491

23

The Atmospere, Climate, And Global, Warming 492

CASE STUDY Global Warming and the Polar Bears of Hudson Bay 493

23.1 The Atmosphere 493

Composition of the Atmosphere 493
Structure of the Atmosphere 494
Atmospheric Processes: Temperature, Pressure,
Global Zones of High and Low Pressure 494
Processes that Remove Materials from
the Atmosphere 495

23.2 Climate 496
Climatic Change 496

23.3 Earth System Science and Global Change 499
Geologic Record 499

A CLOSER LOOK 23.1

Monitoring of Atmospheric Carbon Dioxide Concentrations 500

Real-Time Monitoring 501 Mathematical Models 501

23.4 Global Warming: Earth's Energy Balance and the Greenhouse Effect 501
Electromagnetic Radiation and Earth's Energy Balance 501
The Greenhouse Effect 503
How the Greenhouse Effect Works 504
Changes in Greenhouse Gases 506

23.5 Science of Global Warming 508
Negative and Positive Feedbacks 508
Solar Forcing 509
Aerosols and Volcanic Forcing 509
El Niño 510
Methane Forcing 510
Anthropogenic Forcing from Greenhouse Gases 510

A Closer Look 23.2 El Niño 511

23.6 Potential Effects of Global Warming 511
Changes in Climate 512
Rise in Sea Level 513
Glaciers and Antarctic Ice Cap 514
Changes in Biosphere 514

23.7 Adjustments to Potential Global Warming 516
Living with Global Change 517
Mitigating Global Warming 517
Summary 519

CRITICAL THINKING ISSUE Should the Precautionary Principle Be Applied to Global Warming? 520

REEXAMINING THEMES AND ISSUES 521 Key Terms 522 Study Questions 522 Further Reading 522

24

Air Pollution 523

CASE STUDY London Smog and Indonesian Fires 524

24.1 A Brief History of Air Pollution 525

24.2 Stationary and Mobile Sources of Air Pollution 526

24.3 General Effects of Air Pollution 526

24.4 Air Pollutants 529
Primary and Secondary Pollutants, Natural and Human 529
Criteria Pollutants 530

A CLOSER LOOK 24.1

Acid Rain 533

Air Toxics 536

24.5 Variability of Air Pollution 538
Las Vegas: Particulates 538
Haze from Afar 538

24.6 Urban Air Pollution 539

Influences of Meteorology and Topography 539 Potential for Urban Air Pollution 540 Smog 540 Future Trends for Urban Areas 541

24.7 Poliution Control 543

Pollution Control: Particulates 543
Pollution Control: Automobiles 543
Pollution Control: Sulfur Dioxide 544

24.8 Air Pollution Legislation and Standards 545
Clean Air Act Amendments of 1990 545
Ambient Air Quality Standards 545

24.9 Cost of Air Pollution Control 547 Summary 548

CRITICAL THINKING ISSUE Where Does Arctic Haze Come From, and How Does It Affect the Environment? 549

REEXAMINING THEMES AND ISSUES 551 Key Terms 551 Study Questions 552 Further Reading 552

25

Indoor Air Pollution 553

CASE STUDY Massachusetts Registry of Motor Vehicles Building: Sick Building Syndrome 554

25.1 Sources of Indoor Air Pollution 555

25.2 Heating, Ventilation, and Air-Conditioning Systems 558

25.3 Pathways, Processes, and Driving Forces 559

- 25.4 Building Occupants 559
 Particularly Susceptible People 559
 Symptoms of Indoor Air Pollution 559
 Sick Buildings 560
- 25.5 Environmental Tobacco Smoke 561

25.6 Radon Gas 561

A CLOSER LOOK 25.1

Is Radon Gas Dangerous? 562

Geology and Radon Gas 563
How Does Radon Gas Enter Homes and Other
Buildings? 564
Radon-Resistant Techniques for Homes and Other
Buildings 564

- 25.7 Indoor Air Pollution and Green Buildings 565
- 25.8 Control of Indoor Air Pollution 565

CRITICAL THINKING ISSUE Are Airplanes Adequately Ventilated? 566

Summary 567

REEXAMINING THEMES AND ISSUES 567 Key Terms 568
Study Questions 568 Further Reading 569

26

Ozone Depletion 570

CASE STUDY Epidemic of Skin Cancer 571

26.1 Ozone 572

Ultraviolet Radiation and Ozone 572 Measurement of Stratospheric Ozone 573

- 26.2 Ozone Depletion and CFCs 574
 Emissions and Uses of Ozone-Depleting
 Chemicals 574
 Simplified Stratospheric Chlorine Chemistry 575
- 26.3 The Antarctic Ozone Hole 576
 Polar Stratospheric Clouds 577
 An Arctic Ozone Hole? 580
- 26.4 Tropical and Midlatitude Ozone Depletion 580
- 26.5 The Future of Ozone Depletion 580 Environmental Effects 581

A CLOSER LOOK 26.1

Seasonal Changes in the UV Index: Implications for Antarctic Ozone Depletion 582

Management Issues 583

CRITICAL THINKING ISSUE Human-Made Chemicals and the Ozone Hole: Why Was There Controversy? 584

Summary 585

REEXAMINING THEMES AND ISSUES 586 Key Terms 587 Study Questions 587 Further Reading 587

27

Minerals and the Environment 588

CASE STUDY Golden Colorado: Open-Pit Mine Becomes a Golf Course 589

- 27.1 The Importance of Minerals to Society 589
- 27.2 How Mineral Deposits Are Formed 590
 Distribution of Mineral Resources 590
 Plate Boundaries 590
 Igneous Processes 591
 Sedimentary Processes 591
 Biological Processes 592
 Weathering Processes 592
- 27.3 Resources and Reserves 593
- 27.4 Classification, Availability, and Use of Mineral Resources 593
 Availability of Mineral Resources 594
 Mineral Consumption 594
 U.S. Supply of Mineral Resources 594
- 27.5 Impacts of Mineral Development 595
 Environmental Impacts 595
 Social Impacts 596
- 27.6 Minimizing Environmental Impact of Mineral Development 597

A CLOSER LOOK 27.1

Canada's Butchart Gardens: From Eyesore to Eden 598

27.7 Minerals and Sustainability 599

CRITICAL THINKING ISSUE Will Mining with Microbes Help the Environment? 600

Summary 600

Rexamining Themes and Issues 601 Key Terms 602 Study Questions 602 Further Reading 602

28

Dollars and Environmental Sense: Economics of Environmental Issues 603

CASE STUDY Whale Burgers or Whale Conservation, or Both? 604

- 28.1 The Economic Importance of the Environment 605
- 28.2 The Environment as a Commons 605
- 28.3 Low Growth Rate and Therefore Low Profit as a Factor in Exploitation 607
- 28.4 Externalities 608
- 28.5 Natural Capital, Environmental Intangibles, and Ecosystem Services 609 Public Service Functions of Nature 609

Valuing the Beauty of Nature 609

- 28.6 How is the Future Valued? 610
- 28.7 Risk–Benefit Analysis 611
 Acceptability of Risks and Costs 611
- A CLOSER LOOK 28.1
 Risk-Benefit Analysis and DDT 614
- 28.8 Global Issues: Who Bears the Costs7 614
- 28.9 How Do We Achieve a Goal? Environmental Policy Instruments 615

 Marginal Costs and the Control of Pollutants 615
- A CLOSER LOOK 28.2

 Making Policy Work: Fishing Resources and Policy Instruments 617

Summary 619
REEXAMINING THEMES AND ISSUES 619 Key Terms 620
Study Questions 620 Further Reading 620

CASE STUDY Should We Try to Restore New Orleans? 622

- 29.1 City Life 624
- 29.2 The City as a System 625
- 29.3 Site and Situation: The Location of Cities 626 Importance of Site and Situation 626
- A CLOSER LOOK 29.1 Venice Sinking 627
- A CLOSER LOOK 29.2 Cities and the Fall Line 629 Site Modification 629
- 29.4 City Planning and the Environment 629
- A CLOSER LOOK 29.3
 An Environmental History of Cities 630
- A CLOSER LOOK 29.4
 A Brief History of City Planning 631
 City Planning for Defense and Beauty 631
 The City Park 632

29.5 The City as an Environment 633
The Energy Budget of a City 633
The Urban Atmosphere and Climate 633
Solar Energy in Cities 634
Water in the Urban Environment 634
Soils in the City 634

A CLOSER LOOK 29.5
Design with Nature 635

Pollution in the City 635

29.6 Bringing Nature to the City 635
Cities and Their Rivers 636
Vegetation in Cities 636
Wildlife in Cities 637
Urban "Wilds": The City as Habitat for Wildlife and Endangered Species 638

CRITICAL THINKING ISSUE How Can Urban Sprawl Be Controlled? 640

Animal Pests 641 Controlling Pests 641

Summary 641

REEXAMINING THEMES AND ISSUES 642 Key Terms 642 Study Questions 643 Further Reading 643

CASE STUDY 645 "e-waste": A Growing Environmental Problem 645

- 30.1 Early Concepts of Waste Disposal 646 30.2 Modern Trends 646
- A CLOSER LOOK 30.1 Industrial Ecology 647
- 30.3 Integrated Waste Management 647 Reduce, Reuse, Recycle 647 Recycling of Human Waste 648
- 30.4 Materials Management 649
- 30.5 Solid-Waste Management 649
 Composition of Solid Waste 649
 On-Site Disposal 650
 Composting 650
 Incineration 650
 Open Dumps 651
 Sanitary Landfills 651

A CLOSER LOOK 30.2

Environmental Justice: Demographics of Hazardous Waste 652

Reducing the Waste You Produce 655

30.6 Hazardous Waste 655

A CLOSER LOOK 30.3

Love Canal 656

30.7 Hazardous-Waste Legislation 657
Resource Conservation and Recovery Act 657
Comprehensive Environmental Response,
Compensation, and Liability Act 658
Other Legislation 658

30.8 Hazardous-Waste Management: Land Disposal 658
Secure Landfill 660
Land Application: Microbial Breakdown 660
Surface Impoundment 661
Deep-Well Disposal 661
Summary of Land Disposal Methods 661

30.9 Alternatives to Land Disposal of Hazardous Waste 661
Source Reduction 661
Recycling and Resource Recovery 662
Treatment 662
Incineration 662

30.10 Ocean Dumping 662

A CLOSER LOOK 30.4

Plastics in the Ocean 663

CRITICAL THINKING ISSUE Can We Make Recycling a Financially Viable Industry? 664

30.11 Pollution Prevention 665
Summary 666
REEXAMINING THEMES AND ISSUES 666 Key Terms 667
Study Questions 667 Further Reading 668

Appendix A-1 Glossary G-1

Notes N-1

Photo credits P-1

Index I-1