A Farewell to Entropy: Statistical Thermodynamics Based on Information

Arieh Ben-Naim

Contents

List of Abbreviations		XIII	
P	Preface		
1	Int	roduction	1
	1.1	A Brief History of Temperature and Entropy	1
	1.2	The Association of Entropy with Disorder	9
	1.3	The Association of Entropy with	
		Missing Information	19
2	Elements of Probability Theory		33
	2.1	Introduction	33
	2.2	The Axiomatic Approach	36
		2.2.1 The sample space, denoted Ω	36
		2.2.2 The field of events, denoted F	37
		2.2.3 The probability function, denoted P	39
	2.3	The Classical Definition	43
	2.4	The Relative Frequency Definition	45
	2.5	Independent Events and Conditional Probability	50
		2.5.1 Conditional probability and subjective	
		probability	58
		2.5.2 Conditional probability and cause and effect	62

viii Contents

		2.5.3	Conditional probability and probability of			
			joint events	64		
	2.6	Bayes	'Theorem	65		
		2.6.1	A challenging problem	72		
		2.6.2	A more challenging problem: The three			
			prisoners' problem	74		
	2.7	Rande	om Variables, Average, Variance and Correlation	76		
	2.8		Specific Distributions	86		
		2.8.1	The binomial distribution	86		
		2.8.2	The normal distribution	90		
		2.8.3	The Poisson distribution	93		
	2.9	Gener	rating Functions	94		
	2.10	The I	Law of Large Numbers	100		
3	\mathbf{Ele}	ments	s of Information Theory	103		
	3.1		alitative Introduction to Information Theory	104		
	3.2		ition of Shannon's Information and			
		Its Pr	coperties	110		
			Properties of the function H for the simplest			
			case of two outcomes	112		
		3.2.2	Properties of H for the general case of			
			n outcomes	114		
		3.2.3	The consistency property of the missing			
			information (MI)	125		
		3.2.4	The case of an infinite number of outcomes	130		
	3.3	The V	Various Interpretations of the Quantity H	138		
	3.4	The A	Assignment of Probabilities by the Maximum			
			rtainty Principle	144		
	3.5		Missing Information and the Average Number			
		of Bir	nary Questions Needed to Acquire It	149		
	3.6	The I	False Positive Problem, Revisited	170		
	3.7	The U	Urn Problem, Revisited	172		
4	Transition from the General MI to the					
	Thermodynamic MI					
	4.1	MI in	Binding Systems: One Kind of Information	178		
		4.1.1	One ligand on M sites	179		
		4.1.2	Two different ligands on M sites	179		

. Contents ix

		4.1.3 Two <i>identical</i> ligands on M sites	182
		4.1.4 Generalization to N ligands on M site	s 183
	4.2	Some Simple Processes in Binding Systems	186
		4.2.1 The analog of the expansion process	187
		4.2.2 A pure deassimilation process	190
		4.2.3 Mixing process in a binding system	194
		4.2.4 The dependence of MI on the	
		characterization of the system	196
	4.3		
		Information. The Sackur-Tetrode Equation	201
		4.3.1 The locational MI	201
		4.3.2 The momentum MI	204
		4.3.3 Combining the locational and	
		the momentum MI	205
	4.4	Comments	207
5	Th	e Structure of the Foundations of	
	\mathbf{Sta}	atistical Thermodynamics	211
	5.1	The Isolated System; The Micro-Canonical	
		Ensemble	213
	5.2	System in a Constant Temperature;	
		The Canonical Ensemble	220
	5.3	The Classical Analog of the Canonical Partit	ion
		Function	228
	5.4	The Re-interpretation of the Sackur-Tetrode	
		Expression from Informational Consideration	s 232
	5.5	Identifying the Parameter β for an Ideal Gas	235
	5.6	Systems at Constant Temperature and	
		Chemical Potential; The Grand Canonical	
		Ensemble	236
	5.7	Systems at Constant Temperature and Press	ure;
		The Isothermal Isobaric Ensemble	242
	5.8	The Mutual Information due to Intermolecular	ar
		Interactions	244
6	Sor	me Simple Applications	25 1
	6.1	Expansion of an Ideal Gas	252
	6.2	Pure, Reversible Mixing; The First Illusion	255

x Contents

 6.3.1 Fermi-Dirac (FD) statistics; Fermions 6.3.2 Bose-Einstein (BE) statistics; Bosons 6.3.3 Maxwell Boltzmann (MB) statistics 6.4 Irreversible Process of Mixing Coupled with Expansion 6.5 Irreversible Process of Demixing Coupled with Expansion 6.6 Reversible Assimilation Coupled with Expansion 6.7 Reflections on the Processes of Mixing and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation E Proof of the form of the function H 	259 260 261 265 268 270
 6.3.2 Bose–Einstein (BE) statistics; Bosons 6.3.3 Maxwell Boltzmann (MB) statistics 6.4 Irreversible Process of Mixing Coupled with Expansion 6.5 Irreversible Process of Demixing Coupled with Expansion 6.6 Reversible Assimilation Coupled with Expansion 6.7 Reflections on the Processes of Mixing and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose–Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation 	261265268
 6.3.3 Maxwell Boltzmann (MB) statistics 6.4 Irreversible Process of Mixing Coupled with Expansion 6.5 Irreversible Process of Demixing Coupled with Expansion 6.6 Reversible Assimilation Coupled with Expansion 6.7 Reflections on the Processes of Mixing and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose–Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation 	265 268
 Expansion 6.5 Irreversible Process of Demixing Coupled with Expansion 6.6 Reversible Assimilation Coupled with Expansion 6.7 Reflections on the Processes of Mixing and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose–Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation 	268
 Expansion 6.5 Irreversible Process of Demixing Coupled with Expansion 6.6 Reversible Assimilation Coupled with Expansion 6.7 Reflections on the Processes of Mixing and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose–Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation 	268
 with Expansion 6.6 Reversible Assimilation Coupled with Expansion 6.7 Reflections on the Processes of Mixing and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation 	
with Expansion 6.6 Reversible Assimilation Coupled with Expansion 6.7 Reflections on the Processes of Mixing and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose–Einstein statistics C Pair and triplet independence between events D Proof of the inequality $ R(X,Y) \leq 1$ for the correlation coefficient E The Stirling approximation	
 6.7 Reflections on the Processes of Mixing and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation 	
 6.7 Reflections on the Processes of Mixing and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation 	
 and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation 	
 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation 	272
 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation 	284
Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality $ R(X,Y) \leq 1$ for the correlation coefficient E The Stirling approximation	
Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality $ R(X,Y) \leq 1$ for the correlation coefficient E The Stirling approximation	287
Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality $ R(X,Y) \leq 1$ for the correlation coefficient E The Stirling approximation	
6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality $ R(X,Y) \leq 1$ for the correlation coefficient E The Stirling approximation	290
6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality $ R(X,Y) \leq 1$ for the correlation coefficient E The Stirling approximation	293
 A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X,Y) ≤ 1 for the correlation coefficient E The Stirling approximation 	298
 A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X,Y) ≤ 1 for the correlation coefficient E The Stirling approximation 	317
 useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between cvents D Proof of the inequality R(X,Y) ≤ 1 for the correlation coefficient E The Stirling approximation 	0
 B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X,Y) ≤ 1 for the correlation coefficient E The Stirling approximation 	317
 Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X,Y) ≤ 1 for the correlation coefficient E The Stirling approximation 	
C Pair and triplet independence between cvents D Proof of the inequality $ R(X,Y) \leq 1$ for the correlation coefficient E The Stirling approximation	319
cvents D Proof of the inequality $ R(X,Y) \le 1$ for the correlation coefficient E The Stirling approximation	
for the correlation coefficient E The Stirling approximation	321
for the correlation coefficient E The Stirling approximation	
	322
	326
F Proof of the form of the function H	327
G The method of Lagrange undetermined	
multipliers	J-1
H Some inequalities for concave functions	
I The MI for the continuous case	331
J Identical and indistinguishable (ID) particles	
K The equivalence of the Boltzmann's and Jaynes'	331 334 340
procedures to obtain the fundamental	331 334
distribution of the canonical ensemble	331 334 340

	Contents	xi
${ m L}$	An alternative derivation of the	
	Sackur–Tetrode equation	352
\mathbf{M}	Labeling and un-labeling of particles	355

356

360

363

373

381

Replacing a sum by its maximal term

The solution to the three prisoners' problem

The Gibbs paradox (GP)

References

Index