A Farewell to Entropy: Statistical Thermodynamics Based on Information Arieh Ben-Naim ## **Contents** | List of Abbreviations | | XIII | | |-----------------------|--------------------------------|--|----| | P | Preface | | | | 1 | Int | roduction | 1 | | | 1.1 | A Brief History of Temperature and Entropy | 1 | | | 1.2 | The Association of Entropy with Disorder | 9 | | | 1.3 | The Association of Entropy with | | | | | Missing Information | 19 | | 2 | Elements of Probability Theory | | 33 | | | 2.1 | Introduction | 33 | | | 2.2 | The Axiomatic Approach | 36 | | | | 2.2.1 The sample space, denoted Ω | 36 | | | | 2.2.2 The field of events, denoted F | 37 | | | | 2.2.3 The probability function, denoted P | 39 | | | 2.3 | The Classical Definition | 43 | | | 2.4 | The Relative Frequency Definition | 45 | | | 2.5 | Independent Events and Conditional Probability | 50 | | | | 2.5.1 Conditional probability and subjective | | | | | probability | 58 | | | | 2.5.2 Conditional probability and cause and effect | 62 | viii Contents | | | 2.5.3 | Conditional probability and probability of | | | | |---|---------------------------------------|--------|---|-----|--|--| | | | | joint events | 64 | | | | | 2.6 | Bayes | 'Theorem | 65 | | | | | | 2.6.1 | A challenging problem | 72 | | | | | | 2.6.2 | A more challenging problem: The three | | | | | | | | prisoners' problem | 74 | | | | | 2.7 | Rande | om Variables, Average, Variance and Correlation | 76 | | | | | 2.8 | | Specific Distributions | 86 | | | | | | 2.8.1 | The binomial distribution | 86 | | | | | | 2.8.2 | The normal distribution | 90 | | | | | | 2.8.3 | The Poisson distribution | 93 | | | | | 2.9 | Gener | rating Functions | 94 | | | | | 2.10 | The I | Law of Large Numbers | 100 | | | | 3 | \mathbf{Ele} | ments | s of Information Theory | 103 | | | | | 3.1 | | alitative Introduction to Information Theory | 104 | | | | | 3.2 | | ition of Shannon's Information and | | | | | | | Its Pr | coperties | 110 | | | | | | | Properties of the function H for the simplest | | | | | | | | case of two outcomes | 112 | | | | | | 3.2.2 | Properties of H for the general case of | | | | | | | | n outcomes | 114 | | | | | | 3.2.3 | The consistency property of the missing | | | | | | | | information (MI) | 125 | | | | | | 3.2.4 | The case of an infinite number of outcomes | 130 | | | | | 3.3 | The V | Various Interpretations of the Quantity H | 138 | | | | | 3.4 | The A | Assignment of Probabilities by the Maximum | | | | | | | | rtainty Principle | 144 | | | | | 3.5 | | Missing Information and the Average Number | | | | | | | of Bir | nary Questions Needed to Acquire It | 149 | | | | | 3.6 | The I | False Positive Problem, Revisited | 170 | | | | | 3.7 | The U | Urn Problem, Revisited | 172 | | | | 4 | Transition from the General MI to the | | | | | | | | Thermodynamic MI | | | | | | | | 4.1 | MI in | Binding Systems: One Kind of Information | 178 | | | | | | 4.1.1 | One ligand on M sites | 179 | | | | | | 4.1.2 | Two different ligands on M sites | 179 | | | . Contents ix | | | 4.1.3 Two <i>identical</i> ligands on M sites | 182 | |---|----------------|--|-------------| | | | 4.1.4 Generalization to N ligands on M site | s 183 | | | 4.2 | Some Simple Processes in Binding Systems | 186 | | | | 4.2.1 The analog of the expansion process | 187 | | | | 4.2.2 A pure deassimilation process | 190 | | | | 4.2.3 Mixing process in a binding system | 194 | | | | 4.2.4 The dependence of MI on the | | | | | characterization of the system | 196 | | | 4.3 | | | | | | Information. The Sackur-Tetrode Equation | 201 | | | | 4.3.1 The locational MI | 201 | | | | 4.3.2 The momentum MI | 204 | | | | 4.3.3 Combining the locational and | | | | | the momentum MI | 205 | | | 4.4 | Comments | 207 | | | | | | | 5 | Th | e Structure of the Foundations of | | | | \mathbf{Sta} | atistical Thermodynamics | 211 | | | 5.1 | The Isolated System; The Micro-Canonical | | | | | Ensemble | 213 | | | 5.2 | System in a Constant Temperature; | | | | | The Canonical Ensemble | 220 | | | 5.3 | The Classical Analog of the Canonical Partit | ion | | | | Function | 228 | | | 5.4 | The Re-interpretation of the Sackur-Tetrode | | | | | Expression from Informational Consideration | s 232 | | | 5.5 | Identifying the Parameter β for an Ideal Gas | 235 | | | 5.6 | Systems at Constant Temperature and | | | | | Chemical Potential; The Grand Canonical | | | | | Ensemble | 236 | | | 5.7 | Systems at Constant Temperature and Press | ure; | | | | The Isothermal Isobaric Ensemble | 242 | | | 5.8 | The Mutual Information due to Intermolecular | ar | | | | Interactions | 244 | | 6 | Sor | me Simple Applications | 25 1 | | | 6.1 | Expansion of an Ideal Gas | 252 | | | 6.2 | Pure, Reversible Mixing; The First Illusion | 255 | x Contents | 6.3.1 Fermi-Dirac (FD) statistics; Fermions 6.3.2 Bose-Einstein (BE) statistics; Bosons 6.3.3 Maxwell Boltzmann (MB) statistics 6.4 Irreversible Process of Mixing Coupled with Expansion 6.5 Irreversible Process of Demixing Coupled with Expansion 6.6 Reversible Assimilation Coupled with Expansion 6.7 Reflections on the Processes of Mixing and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation E Proof of the form of the function H | 259
260
261
265
268
270 | |--|---| | 6.3.2 Bose–Einstein (BE) statistics; Bosons 6.3.3 Maxwell Boltzmann (MB) statistics 6.4 Irreversible Process of Mixing Coupled with Expansion 6.5 Irreversible Process of Demixing Coupled with Expansion 6.6 Reversible Assimilation Coupled with Expansion 6.7 Reflections on the Processes of Mixing and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose–Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation | 261265268 | | 6.3.3 Maxwell Boltzmann (MB) statistics 6.4 Irreversible Process of Mixing Coupled with Expansion 6.5 Irreversible Process of Demixing Coupled with Expansion 6.6 Reversible Assimilation Coupled with Expansion 6.7 Reflections on the Processes of Mixing and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose–Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation | 265
268 | | Expansion 6.5 Irreversible Process of Demixing Coupled with Expansion 6.6 Reversible Assimilation Coupled with Expansion 6.7 Reflections on the Processes of Mixing and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose–Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation | 268 | | Expansion 6.5 Irreversible Process of Demixing Coupled with Expansion 6.6 Reversible Assimilation Coupled with Expansion 6.7 Reflections on the Processes of Mixing and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose–Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation | 268 | | with Expansion 6.6 Reversible Assimilation Coupled with Expansion 6.7 Reflections on the Processes of Mixing and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation | | | with Expansion 6.6 Reversible Assimilation Coupled with Expansion 6.7 Reflections on the Processes of Mixing and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose–Einstein statistics C Pair and triplet independence between events D Proof of the inequality $ R(X,Y) \leq 1$ for the correlation coefficient E The Stirling approximation | | | 6.7 Reflections on the Processes of Mixing and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation | | | 6.7 Reflections on the Processes of Mixing and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation | | | and Assimilation 6.8 A Pure Spontaneous Deassimilation Process 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation | | | 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation | 272 | | 6.9 A Process Involving only Change in the Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X, Y) ≤ 1 for the correlation coefficient E The Stirling approximation | 284 | | Momentum Distribution 6.10 A Process Involving Change in the Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality $ R(X,Y) \leq 1$ for the correlation coefficient E The Stirling approximation | | | Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality $ R(X,Y) \leq 1$ for the correlation coefficient E The Stirling approximation | 287 | | Intermolecular Interaction Energy 6.11 Some Baffling Experiments 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality $ R(X,Y) \leq 1$ for the correlation coefficient E The Stirling approximation | | | 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality $ R(X,Y) \leq 1$ for the correlation coefficient E The Stirling approximation | 290 | | 6.12 The Second Law of Thermodynamics Appendices A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality $ R(X,Y) \leq 1$ for the correlation coefficient E The Stirling approximation | 293 | | A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X,Y) ≤ 1 for the correlation coefficient E The Stirling approximation | 298 | | A Newton's binomial theorem and some useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X,Y) ≤ 1 for the correlation coefficient E The Stirling approximation | 317 | | useful identities involving binomial coefficients B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between cvents D Proof of the inequality R(X,Y) ≤ 1 for the correlation coefficient E The Stirling approximation | 0 | | B The total number of states in the Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X,Y) ≤ 1 for the correlation coefficient E The Stirling approximation | 317 | | Fermi-Dirac and the Bose-Einstein statistics C Pair and triplet independence between events D Proof of the inequality R(X,Y) ≤ 1 for the correlation coefficient E The Stirling approximation | | | C Pair and triplet independence between cvents D Proof of the inequality $ R(X,Y) \leq 1$ for the correlation coefficient E The Stirling approximation | 319 | | cvents D Proof of the inequality $ R(X,Y) \le 1$ for the correlation coefficient E The Stirling approximation | | | for the correlation coefficient E The Stirling approximation | 321 | | for the correlation coefficient E The Stirling approximation | | | | 322 | | | 326 | | F Proof of the form of the function H | 327 | | G The method of Lagrange undetermined | | | multipliers | J-1 | | H Some inequalities for concave functions | | | I The MI for the continuous case | 331 | | J Identical and indistinguishable (ID) particles | | | K The equivalence of the Boltzmann's and Jaynes' | 331
334
340 | | procedures to obtain the fundamental | 331
334 | | distribution of the canonical ensemble | 331
334
340 | | | Contents | xi | |--------------|---------------------------------------|-----| | ${ m L}$ | An alternative derivation of the | | | | Sackur–Tetrode equation | 352 | | \mathbf{M} | Labeling and un-labeling of particles | 355 | 356 360 363 373 381 Replacing a sum by its maximal term The solution to the three prisoners' problem The Gibbs paradox (GP) References Index