

Structural Dynamics and Vibration in Practice

An Engineering Handbook

Douglas Thorby

Contents

Pre	Preface			
Ack	nowled	gements	ΧV	
Cha	pter 1	Basic Concepts	1	
1.1	Static	s, dynamics and structural dynamics	1	
1.2	Coord	linates, displacement, velocity and acceleration	1	
1.3		e harmonic motion	2	
	1.3.1	Time history representation	3	
	1.3.2	Complex exponential representation	5	
1.4	Mass,	stiffness and damping	2 3 5 7	
		Mass and inertia	7	
		Stiffness	10	
		Stiffness and flexibility matrices	12	
		Damping	14	
1.5		Energy methods in structural dynamics		
		Rayleigh's energy method	17	
		The principle of virtual work	19	
		Lagrange's equations	21	
1.6		r and non-linear systems	23	
1.7		ns of units	23	
	1.7.1	Absolute and gravitational systems	24	
		Conversion between systems	26	
		The SI system	27	
	Refere	ences	28	
Cha	pter 2	The Linear Single Degree of Freedom System: Classical Methods	29	
2.1	Setting up the differential equation of motion			
	2.1.1	Single degree of freedom system with force input	29	
	2.1.2	Single degree of freedom system with base motion input	33	
2.2	Free r	esponse of single-DOF systems by direct solution of the equation		
	of mo	tion	34	
2.3	Forced response of the system by direct solution of the equation of motion 3			

viii Contents

Cha	pter 3		45
		in the Time Domain	
3.1		analytical methods	46
	3.1.1	*	46
		The convolution or Duhamel integral	50
		Listings of standard responses	53
3.2		-analytical' methods	55
		Impulse response method	56
	3.2.2		56
2.2	3.2.3	1 1	56
3.3	•	by-step numerical methods using approximate derivatives Euler method	59 60
		Modified Euler method	62
		Central difference method	62
		The Runge–Kutta method	65
		Discussion of the simpler finite difference methods	69
3.4		mic factors	70
J	3.4.1	Dynamic factor for a square step input	70
3.5		onse spectra	72
		Response spectrum for a rectangular pulse	72
		Response spectrum for a sloping step	74
	Refer		76
CI.			
Cha	pter 4	The Linear Single Degree of Freedom System: Response	77
		in the Frequency Domain	77
4.1	Resp	onse of a single degree of freedom system with applied force	77
		Response expressed as amplitude and phase	77
		Complex response functions	81
		Frequency response functions	83
4.2	_	e-DOF system excited by base motion	86
		Base excitation, relative response	87
		Base excitation: absolute response	91
4.3		transmissibility	93
4.4		ation by a rotating unbalance	94
		Displacement response	95 96
		Force transmitted to supports rences	90 97
	Kerer	ences	91
Cha	pter 5	Damping	99
5.1	Visco	ous and hysteretic damping models	99
5.2	Dam	ping as an energy loss	103
	5.2.1	Energy loss per cycle – viscous model	103
	5.2.2	Energy loss per cycle – hysteretic model	104
	5.2.3		105
	5.2.4	Specific damping capacity	106
5.3	Tests	on damping materials	108

Contents ix

5.4	Quan	tifying linear damping	108
•		Quality factor, Q	108
		Logarithmic decrement	109
		Number of cycles to half amplitude	110
		Summary table for linear damping	111
5.5		dissipated by damping	112
5.6		inear damping	112
5.0	5.6.1	Coulomb damping	113
		Square law damping	113
5.7		valent linear dampers	114
J.,	5.7.1	Viscous equivalent for coulomb damping	115
		Viscous equivalent for square law damping	116
		Limit cycle oscillations with square-law damping	117
5.8		tion of damping and natural frequency in structures with	117
5.0		tude and time	117
	ampn	tude and time	117
Cha	pter 6	Introduction to Multi-degree-of-freedom Systems	119
6.1	Settin	g up the equations of motion for simple, undamped,	
		DOF systems	119
	6.1.1	Equations of motion from Newton's second law	-
		and d'Alembert's principle	120
	6.1.2	Equations of motion from the stiffness matrix	120
		Equations of motion from Lagrange's equations	121
6.2		x methods for multi-DOF systems	122
	6.2.1	Mass and stiffness matrices: global coordinates	122
		Modal coordinates	126
		Transformation from global to modal coordinates	127
6.3		mped normal modes	132
	6.3.1	Introducing eigenvalues and eigenvectors	132
6.4		oing in multi-DOF systems	142
	_	The damping matrix	142
		Damped and undamped modes	143
		Damping inserted from measurements	144
	6.4.4	Proportional damping	145
6.5		onse of multi-DOF systems by normal mode summation	147
6.6		onse of multi-DOF systems by direct integration	155
0.0	6.6.1	Fourth-order Runge–Kutta method for multi-DOF systems	156
	0.0.1	Tourist order Range Rutta method for main Dor systems	150
Cha	pter 7	Eigenvalues and Eigenvectors	159
7.1	The e	igenvalue problem in standard form	159
	7.1.1	The modal matrix	161
7.2	Some	basic methods for calculating real eigenvalues and eigenvectors	162
	7.2.1	Eigenvalues from the roots of the characteristic equation	
		and eigenvectors by Gaussian elimination	162
	7.2.2	Matrix iteration	165
		Jacobi diagonalization	168

x Contents

7.3	Choleski factorization 1' More advanced methods for extracting real eigenvalues and eigenvectors 1'		
7.4	More advanced methods for extracting real eigenvalues and eigenvectors		
7.5		lex (damped) eigenvalues and eigenvectors	179
	Refere		180
Chai	oter 8	Vibration of Structures	181
8.1		orical view of structural dynamics methods	181
8.2		nuous systems	182
0.2		Vibration of uniform beams in bending	182
		The Rayleigh–Ritz method: classical and modern	189
8.3		onent mode methods	194
0.5		Component mode synthesis	195
		The branch mode method	208
8.4		nite element method	213
		An overview	213
		Equations of motion for individual elements	221
8.5		etrical structures	234
	Refere		235
Chap	oter 9	Fourier Transformation and Related Topics	237
9.1		ourier series and its developments	237
J.1		Fourier series	237
		Fourier coefficients in magnitude and phase form	243
		The Fourier series in complex notation	245
		The Fourier integral and Fourier transforms	246
9.2		iscrete Fourier transform	247
		Derivation of the discrete Fourier transform	248
		Proprietary DFT codes	255
		The fast Fourier transform	256
9.3	Aliasii		256
9.4		onse of systems to periodic vibration	260
	$9.4.\hat{1}$	Response of a single-DOF system to a periodic input force	261
	Refere	ences	265
Chaj	pter 10	Random Vibration	267
10.1	Statio	narity, ergodicity, expected and average values	267
		itude probability distribution and density functions	270
	10.2.1	± • • • • • • • • • • • • • • • • • • •	274
10.3		ower spectrum	279
	10.3.1		279
	10.3.2		281
10.4		onse of a system to a single random input	286
	10.4.1	• •	286
	10.4.2	* * *	
		power spectrum	287

Contents xi

	10.4.3	Response of a single-DOF system to a broadband	
		random input	288
	10.4.4	Response of a multi-DOF system to a single	
		broad-band random input	296
10.5	Correla	ation functions and cross-power spectral density functions	299
		Statistical correlation	299
	10.5.2	The autocorrelation function	300
	10.5.3	The cross-correlation function	302
		Relationships between correlation functions and power	
		spectral density functions	303
10.6	The res	sponse of structures to random inputs	305
	10.6.1	The response of a structure to multiple random inputs	305
	10.6.2	Measuring the dynamic properties of a structure	307
10.7		ating power spectra and correlation functions using the discrete	
	Fourie	r transform	310
	10.7.1	Computing spectral density functions	312
		Computing correlation functions	314
		Leakage and data windows	317
	10.7.4	Accuracy of spectral estimates from random data	318
10.8		e due to random vibration	320
	10.8.1	The Rayleigh distribution	321
	10.8.2		322
	Referen	nces	324
Char	ter 11	Vibration Reduction	325
11.1		on isolation	326
	11.1.1	Isolation from high environmental vibration	326
11.0		Reducing the transmission of vibration forces	332
11.2	_	namic absorber	332
11.0		The centrifugal pendulum dynamic absorber	336
11.3		mped vibration absorber	338
		The springless vibration absorber	342
	Referen	1CeS	345
Char	nter 12	Introduction to Self-Excited Systems	347
		·	
12.1		n-induced vibration	347
	12.1.1	Small-amplitude behavior	347
	12.1.2	Large-amplitude behavior	349
10.0	12.1.3	Friction-induced vibration in aircraft landing gear	350
12.2	Flutter		353
	12.2.1	The bending-torsion flutter of a wing	354
	12.2.2	Flutter equations	358
10.2	12.2.3	An aircraft flutter clearance program in practice	360
12.5	Landin Referei	g gear shimmy	362 366
	L atama		

xii Contents

Chapter 13		Vibration testing	367
13.1	Modal	testing	368
	13.1.1	Theoretical basis	368
	13.1.2	Modal testing applied to an aircraft	369
13.2	2 Environmental vibration testing		373
	13.2.1	Vibration inputs	373
	13.2.2	Functional tests and endurance tests	374
	13.2.3	Test control strategies	375
13.3	Vibrati	ion fatigue testing in real time	376
13.4	Vibrati	ion testing equipment	377
	13.4.1	Accelerometers	377
	13.4.2	Force transducers	378
	13.4.3	Exciters	378
	Refere	nces	385
Appe	endix A	A Short Table of Laplace Transforms	387
• •		B Calculation of Flexibility Influence CoefficientsC Acoustic Spectra	389
			393
Index	x		397