MICROBIAL FUEL CELLS Bruce E. Logan ## Contents | PREFACE | | | |---------|---|----| | 1. | Introduction | 1 | | | 1.1. Energy needs / 1 1.2. Energy and the challenge of global climate change / 2 1.3. Bioelectricity generation using a microbial fuel cell—the process of electrogenesis / 4 1.4. MFCs and energy sustainability of the water infrastructure / 6 1.5. MFC technologies for wastewater treatment / 7 1.6. Renewable energy generation using MFCs / 9 1.7. Other applications of MFC technologies / 11 | | | 2. | EXOELECTROGENS | 12 | | | 2.1. Introduction / 12 2.2. Mechanisms of electron transfer / 13 2.3. MFC studies using known exoelectrogenic strains / 18 2.4. Community analysis / 22 2.5. MFCs as tools for studying exoelectrogens / 27 | | | 3. | VOLTAGE GENERATION | 29 | | | 3.1. Voltage and current / 29 3.2. Maximum voltages based on thermodynamic relationships / 30 3.3. Anode potentials and enzyme potentials / 36 3.4. Role of communities versus enzymes in setting anode potentials / 40 3.5. Voltage generation by fermentative bacteria? / 41 | | | 4. | POWER GENERATION | 44 | | | 4.1. Calculating power / 44 4.2. Coulombic and energy efficiency / 48 4.3. Polarization and power density curves / 50 | | | | 4.5. Chemical and electrochemical analysis of reactors / 57 | | |----|---|-----| | 5. | MATERIALS | 61 | | | 5.1. Finding low-cost, highly efficient materials / 61 5.2. Anode materials / 62 5.3. Membranes and separators (and chemical transport through them) / 68 5.4. Cathode materials / 76 5.5. Long-term stability of different materials / 83 | | | 6. | ARCHITECTURE | 85 | | | 6.1. General requirements / 85 6.2. Air-cathode MFCs / 86 6.3. Aqueous cathodes using dissolved oxygen / 95 6.4. Two-chamber reactors with soluble catholytes or poised potentials / 97 6.5. Tubular packed bed reactors / 102 6.6. Stacked MFCs / 104 6.7. Metal catholytes / 105 6.8. Biohydrogen MFCs / 108 6.9. Towards a scalable MFC architecture / 110 | | | 7. | KINETICS AND MASS TRANSFER | 111 | | | 7.1. Kinetic- or mass transfer-based models? / 111 7.2. Boundaries on rate constants and bacterial characteristics / 112 7.3. Maximum power from a monolayer of bacteria / 116 7.4. Maximum rate of mass transfer to a biofilm / 118 7.5. Mass transfer per reactor volume / 122 | | | 8. | MECs FOR HYDROGEN PRODUCTION | 125 | | | 8.1. Principle of operation / 125 8.2. MEC systems / 127 8.3. Hydrogen yield / 131 8.4. Hydrogen recovery / 132 8.5. Energy recovery / 134 8.6. Hydrogen losses / 142 8.7. Differences between the MEC and MFC systems / 145 | | | 9. | MFCs for Wastewater Treatment | 146 | | | 9.1. Process trains for WWTPs / 146 9.2. Replacement of the biological treatment reactor with an MFC / 149 9.3. Energy balances for WWTPs / 154 9.4. Implications for reduced sludge generation / 157 9.5. Nutrient removal / 158 9.6. Electrogenesis versus methanogenesis / 159 | | 4.4. Measuring internal resistance / 54 | 10. | OTHER MFC TECHNOLOGIES | 162 | |-----|--|-----| | | 10.1. Different applications for MFC-based technologies / 162 10.2. Sediment MFCs / 162 10.3. Enhanced sediment MFCs / 166 10.4. Bioremediation using MFC technologies / 168 | | | 11. | Fun! | 171 | | | 11.1 MFCs for new scientists and inventors / 171 11.2 Choosing your inoculum and media / 174 11.3 MFC materials: electrodes and membranes / 175 11.4 MFC architectures that are easy to build / 176 11.5 MEC reactors / 180 11.6 Operation and assessment of MFCs / 181 | | | 12. | OUTLOOK | 182 | | | 12.1 MFCs yesterday and today / 182 12.2 Challenges for bringing MFCs to commercialization / 183 12.3 Accomplishments and outlook / 184 | | | No | TATION | 186 | | RE | FERENCES | 189 | | Ini | DEX | 199 |