SCHOENWOLF BLEYL BRAUER FRANCIS-WEST FOURTH EDITION ## LARSEN'S HUMAN EMBRYOLOGY CHURCHILL LIVINGSTONE Student Online + Print ## **Contents** | | Introduction | 1 | Spermatogenesis | 25 | |----|---|----|--|------| | | Why Study Human Embryology? Link between development and cancer | 2 | Spermatozoa abnormalities | 25 | | | | 3 | Oogenesis | 28 | | | Periods of Human Embryology | 4 | Chromosomal abnormalities result | | | | Note about gene names | 4 | in spontaneous abortion or
abnormal development | 22 | | | Why do we age?
Progeria: premature aging | 5 | | 32 | | | | 6 | Many chromosomal anomalies arise | | | | Phases of Human Embryology | 6 | during gametogenesis and cleavage | 32 | | | Period of Egg and Embryo: | | Chromosome analysis can determine | | | | Summary of Main Events | 8 | parental source of defective | | | | Pody Avon Hadorstonding Embassis | | chromosome and provides basis | | | | Body Axes: Understanding Embryonic Coordinates | 0 | for diagnosis and possible | | | | Coordinates | 9 | treatment | 34 | | | Want to Learn More? | 12 | Ovulation | 35 | | 1, | · | 15 | Monetrual Cycle | | | | | | Menstrual Cycle | 37 | | | | 17 | Fertilization | 39 | | | | 18 | Cleavage | 41 | | | | 19 | What determines whether a | | | | Molecular regulation of PGC | | blastomere will form inner cell | | | | 1 | 19 | mass or trophoblast? | 43 | | | Gametogenesis Why is timing of gametogenesis differer | | End of First Week: Initiating Implantation | า 43 | | | | | Contraception | 44 | | | | 20 | Assisted reproductive technology | 46 | | | | | | | In the research lab ^{*}color coding indicates type and title of boxes within text | 2 | Second Week: Becoming Bilaminar and Fully Implanting | 51 | Primary versus Secondary Body
Development | 97 | |--------|--|----------------------|--|-------------------| | Manage | Becoming Fully Implanted | 53 4 | Fourth Week: Forming the Embryo | 101 | | | What regulates the initial phase of implantation: blastocyst adherence to the uterine epithelium? | 53 | Tube-within-a-Tube Body Plan Arises
through Body Folding
Anterior body wall defects | 103
106 | | | Why isn't conceptus rejected by its
mother?
Initiating endoderm formation | 55
56 | Neurulation: Establishing the Neural
Tube, the Rudiment of the Central
Nervous System | 107 | | | Development of Amniotic Cavity | 57 | Mechanisms of neurulation | 110 | | | Development of Yolk Sac and Chorionic Cavity | 57 | Actin-binding protiens and apical constriction Dorsal-ventral patterning of the | 112 | | | Uteroplacental Circulatory System Begins to Develop during Second Week Hydatidiform moles | 58
60 | neural tube
Neural tube defects (NTDs) | 112
113 | | | Genomic imprinting | 64 | Secondary Neurulation | 117 | | | X inactivation X inactivation affects inheritance of | 67
67 | Cranial-Caudal Regionalization of the
Neural Tube | 117 | | | congenital disease
Genomic imprinting affects
inheritance of congenital disease | 67 | Neural Crest Cells Epithelial-to-mesenchymal transformation (EMT) | 119
119 | | 3 | Third Week: Becoming Trilaminar and Establishing Body Axes | 69 | What local factors guide migration of neural crest cells? | 121 | | | Overview of Gastrulation: Forming Three Primary Germ Layers and Body Axes Induction of primitive streak Cellular basis of primitive streak formation Establishing left-right axis Development in animal models versus humans | 71
71
72
73 | Mutants provide information about mechanisms of neural crest cell migration and developmental restriction Survival and differentiation of peripheral neurons Neural crest cell disease: neurocristopathies | 122
128
128 | | | Cellular basis of gastrulation Establishing medial-lateral subdivisions of mesoderm | 80
81 | Somite Differentiation: Forming Dermatome, Myotome, and Sclerotome Inductive interactions underlie | | | | Specifics of Gastrulation: Moving Cells to New Locations and Making Organ | | formation of somite subdivisions Spinal anomalies | 128
130 | | | Rudiments That Undergo Inductive Interactions Cellular basis of convergent extension | 83
87 | Principles and Mechanisms of
Morphogenesis and
Dysmorphogenesis | 133 | | | Molecular mechanism of somitogenesis | 88 | Principles of Morphogenesis and
Dysmorphogenesis | 133 | | | Abnormal gastrulation leads to | | Animal Models | 135 | | | caudal dysplasia | 92 | Experimental Techniques | 142 | | | Formation of Neural Plate Neural induction | 94
94 | Signaling Pathways | 150 | | | Head trunk and tail organizers | 97 | Embryonic Stem Cells and Cloning | 162 | | | Fetal Development and the Fetus as Patient | 167 | | Subdivision of sclerotome
Specification of vertebrae identity
Vertebral defects | 222
227
230 | |----------------------------------|--|---------------------------------|------------------------------------|---|----------------------------| | | During Fetal Period, Embryonic Organ
Systems Mature and Fetus Grows | 169 | | Myotomes and Dermatomes Develop at | | | | Development of Placenta | 170 | | Segmental Levels Myogenic commitment in somite | 231
234 | | | Development of Umbilical Cord | 171 | | Long Bone and Joint Development | 234 | | | Exchange of Substances between
Maternal and Fetal Blood in Placenta | 173 | | Molecular regulation of bone and joint development | 237 | | | Intrauterine Growth Restriction | 178 | | Defects in skeletal development | 239 | | | Maternal Diabetes and Obesity | 178 | | Development of Limb Muscles Migration of muscle progenitors | 241
242 | | | Placenta Produces Several Important
Hormones | 179 | | Muscle cell and fiber type commitment | 244 | | | Production and Resorption of
Amniotic Fluid | 179 | | Regional differences in development of muscles Muscular dystrophy | 244
244 | | | Twinning | 179 | 0 | Development of the Central Nervous | | | | Prenatal Diagnosis Assesses Health of Unborn | 180 | | System | 247 | | | | | | Structural Divisions of Nervous System | 251 | | | Treating Fetus in Utero Fetal Cord Blood and Stem Cells | 186 | | Functional Divisions of Nervous | | | <u>-</u> | | 189 | | System | 251 | | and an in the special section of | Development of the Skin and Its Derivatives | 193 | | Primary Brain Vesicles Subdivide to Form Secondary Brain Vesicles | 251 | | | Origin of Epidermis and Dermis of Skin
Molecular regulation of skin
differentiation | 195 | | Positional information patterns neural plate and tube | 253 | | | | 197
198 | | Formation of Brain Flexures | 255 | | | Inherited skin diseases Development of Skin Derivatives Anomalies of skin derivatives Regulation of hair patterning and differentiation Hair anomalies Wnt signaling and development of mammary gland Tooth induction Tooth anomalies | 202 | Cytodifferentiation of Neural Tube | 255 | | | | | 202 | Differentiation of Spinal Cord | Differentiation of Spinal Cord | 257 | | | | 205
206
209
214
214 | | Differentiation of Brain Cellular and molecular basis of cere malformations and dysfunction Mouse mutants with cerebellar ataxias Development of visual system: example of how nervous system | 258
ellar
267
269 | | 8 | Development of the | 047 | | wires itself Congenital malformations of | 274 | | | Musculoskeletal System Tissue Origins and Differentiation of | 217 | | cerebral cortex | 285 | | | Tissue Origins and Differentiation of Musculoskeletal System Commitment to musculoskeletal lineage | 219 | | Kallmann syndrome
Growth of the Brain | 287
290 | | | | 221 | XIIIXXXXXXXX | Brain size | 290 | | | Somites Differentiate into Sclerotome,
Myotome, and Dermatome | 222 | SHESSERIES. | Development of the Peripheral
Nervous System | 297 | | | Resegmentation of Sclerotomes | 217 | | Structural Divisions of Nervous System | 299 | | | Functional Divisions of Nervous System | 299 | Mechanisms driving cardiac | | |----|--|------------|---|------------| | | Origin of PNS Specification and plasticity of precursor cells of PNS Neural crest cells and their | 300 | bending and looping Sidedness in heart looping | 352
353 | | | | 300 | Subregions of heart are specified
early in development | 354 | | | derivatives as stem cells | 301 | Coordinated Remodeling of Heart | | | | Neurofibromatosis type 1 (NF-1) | 302 | Tube and Primitive Vasculature | | | | Neurogenesis in PNS | 302 | Produces Systemic and Pulmonary | 255 | | | Development of Trunk PNS
Hereditary peripheral | 303 | Circulations
Septation of Heart | 355
360 | | | neuropathies | 306 | Epithelial-to-mesenchymal | | | | Regulating axonal guidance in PNS | 311 | transformation during endocardial | | | | Development of Cranial PNS | 313 | cushion cell formation
Effects of hyperglycemia and | 361 | | 11 | Development of the Respiratory | 210 | hypoxia on cushion tissue | | | | System and Body Cavities | 319 | formation | 362 | | | Development of Lungs and | 201 | Myocardium develops two layers
Neural crest cell contribution to | 369 | | | Respiratory Tree | 321 | outflow tract septation | 375 | | | Developmental abnormalities of
lung and respiratory tree | 324 | Many heart defects may be related | 0.0 | | | Lung maturation and survival of | J2 ! | to interactions between | | | | premature infants | 325 | secondary heart field and | | | | Approaches for studying lung | | neural crest cells | 376 | | | development and branching | | Development of Pacemaker and | | | | morphogenesis | 327 | Conduction System | 376 | | | Drosophila tracheal system development | 328 | Development of Epicardium and | | | | · | 320 | Coronary Vasculature | 377 | | | Partitioning of Coelom and Formation | 200 | Frequency and etiology of | | | | of Diaphragm Diaphragmatic defects and pulmonary hypoplasia Oligohydramnios and pulmonary hypoplasia Congenital diaphragmatic hernia | 329 | cardiovascular malformations | 378 | | | | 334 | Common heart malformations | 378 | | | | | Known genetic causes of heart malformations | 382 | | | | 334 | 22q11.2 deletions and heart | J02 | | | | 335 | malformations | 383 | | 12 | Development of the Heart | 337 | 13 Development of the Vasculature | 385 | | | Establishing Cardiac Lineage | 339 | Formation of Vasculature Begins | | | | Formation of Primitive Heart Tube | 339 | Early in Third Week | 388 | | | Specification of cardiac progenitor | <i>337</i> | Second source of hematopoietic | | | | cells | 340 | stem cells | 390 | | | Role of secondary heart field in formation of outflow segment of heart Gene mutations target primary and secondary heart fields | | Intraembryonic hematopoietic stem cells may be source of | | | | | | definitive hematopoietic stem | | | | | 349 | cells | 390 | | | | | | | | | | 349 | Vasculogenesis
Methods for visualizing blood | 392 | | | Cardiac Looping | 350 | vessel formation | 392 | | | Formation of Primitive Blood Vessels | | What initiates and controls | J, Z | | | Associated with Endocardial Tube | 350 | vasculogenesis? | 393 | | ls | Regulation of number of islet cells | 454 | |---------------------|--|---| | 395 | Development of Spleen | 454 | | | Derivatives of Ventral Mesentery | 454 | | 401
nt | Development of Midgut Abnormal rotation and fixation of midgut | 456
456 | | | | 450 | | 402
al
407 | Cytodifferentiation of Endodermal
Epithelium of Gut | 458
462 | | 408 | Differentiation of gastrointestinal tract epithelium Faulty Wnt signaling and β-catenin turnover is often a prelude to | 464 | | 413 | colon cancer | 465 | | 413
415 | Development of Outer Intestinal Wall
and Its Innervation
Hirschsprung disease | 467
470 | | is | Irritable bowel syndrome | 470 | | 419
424 | stenosis Hirschsprung disease and neural | 470 | | 425 | crest cell defects | 471 | | c
428 | abdominal wall defects | 472
1
475
475 | | | | ,,, | | 429 | System | 479 | | 432 | | 483
486 | | | Factors expressed in metanephric | | | 435 | mesoderm regulate induction of | | | 437 | | 490 | | 439 | Signals from ureteric bud induce
nephrogenic mesoderm to conden | | | 441
cates
442 | ureteric branching and growth
Influences between ureteric bud and | 490 | | | metanephric blastema induce | | | 445
449 | formation of nephron through mesenchymal-to-epithelial | ΛΩЭ | | | formation of nephron through | 493
493 | | | 395
397
399
401
at 401
402
al 407
408
413
413
415
s
419
424
425
c
428
428
428
428
429
432
435
437
439
441
ates | Development of Spleen Development of Midgut Abnormal rotation and fixation of midgut Defects of the umbilicus and anterior abdominal wall Cytodifferentiation of Endodermal Epithelium of Gut Differentiation of gastrointestinal tract epithelium Faulty Wnt signaling and β-catenin turnover is often a prelude to colon cancer Development of Outer Intestinal Wall and Its Innervation Hirschsprung disease Irritable bowel syndrome Infantile hypertrophic pyloric stenosis Hirschsprung disease and neural crest cell defects Development of Hindgut Hindgut abnormalities and associated abdominal wall defects Urachal anomalies Development of the Urogenital System Three Nephric Systems Develop Formation of nephric lineage Factors expressed in metanephric mesoderm regulate induction of budding and branching of the ureteric bud Signals from ureteric bud induce nephrogenic mesoderm to conden while mesoderm drives continual ureteric branching and growth Influences between ureteric bud and and actes in the fluences between ureteric bud and areteric branching and growth Influences between ureteric bud and areteric branching and growth Influences between ureteric bud and areteric branching and growth Influences between ureteric bud and areteric branching and growth Influences between ureteric bud and areteric branching and growth Influences between ureteric bud and areteric branching and growth Influences between ureteric bud and areteric branching and growth Influences between ureteric bud and areteric branching and growth Influences between ureteric bud and areteric branching and growth Influences between ureteric bud and areteric branching and growth Influences between ureteric bud and areteric branching and growth Influences between ureteric bud and areteric branching and growth Influences between ureteric bud and areteric branching and growth Influences between ureteric bud and areteric branching and growth Influences between ureteric bud and areteric branching are areteric bud and areteric branching are areteric b | | Congenital polycystic kidney disease | 495 | Descent of the testes | 526 | |--|--------------------------|---|--------------------------------| | Ascent of Kidneys | 495 | Cryptorchidism | 530 | | Contributions of Hindgut Endoderm to Urinary Tract Urinary tract anomalies | 495
497 | Ovaries Become Suspended in Broad
Ligament of Uterus and Are Held High
in Abdominal Cavity by Cranial
Suspensory Ligaments | 530 | | Development of Suprarenal Gland
Congenital adrenal hyperplasia | 499
500 | Pseudohermaphrodism Defective partitioning of cloaca | 531
536 | | Genital System Arises with Urinary System | 500 | Development of the Pharyngeal
Apparatus and Face | 543 | | Initiating Male versus Female Development Sox9 gene is likely a primary target of Sry expression | 503
505 | Origin of Skull
Holoprosencephaly
Craniosynostosis | 545
547
550 | | Sertoli cells are main organizer of testes Sex reversal Hermaphrodites Müllerian duct regression and | 505
505
508
508 | Development of Pharyngeal Arches Hindbrain is segmented Retinoic acid acts in normal and abnormal development of head and neck | 551
560
560 | | Amh-mediated upregulation of metalloproteinase expression Mutations in Amh or its receptor causes persistent müllerian duct | 509 | Development of Face Outgrowth of facial prominences is regulated by epithelial-mesenchym interactions | 563
al
564 | | syndrome in XY individuals Differentiation of Leydig cells Development of the epididymus, vas deferens, and seminal vesicles Cystic fibrosis transmembrane | 509
510
512 | Patterning of facial prominences is regulated by epithelial-mesenchymal interactions Dlx code patterns the first pharyngeal arch | 566
566 | | conductance regulator is required for vas deferens development Development of prostate gland | 512
512 | Development of Nasal and Oral
Cavities
Facial clefting | 568
569 | | In Absence of Y Chromosome, Female Development Occurs | 515 | Development of Sinuses | 571 | | Female gonadogenesis is not a | J15 | Fate of Pharyngeal Clefts | 572 | | simple matter of default Müllerian duct development and regionalized expression of Hox | 516 | Pharyngeal Arches Give Rise to Tongue | 573 | | genes | 518 | Development of Thyroid Gland | 576 | | Anomalies of uterus | 520 | Development of Pharyngeal Pouches | 576 | | Diethylstilbestrol causes several reproductive anomalies | 520 | Development of Salivary Glands Causes of craniofacial anomalies | 578
579 | | Development of External Genitalia
Formation of external genitalia | 521
522 | Cranialfacial syndromes | 580 | | Suspension of Mesonephric-Gonadal Complex within Abdomen | 17 525 | Development of the Ears and Eyes | 583 | | Development of the Inguinal Canals | 525 | Ear Development | 588 | | Descent of Testes | 526 | Induction and patterning of
rudiments of inner ear | 588 | | Formation of sensory cells Malformations of inner ear: | 593 | Patterning of limb bud Growth and patterning along | 621 | |--|------------|--|------------| | sensorineural hearing loss | 597 | proximal-distal axis | 621 | | Malformations of external and mido
ear: conductive hearing loss | lle
601 | Morphogenesis of Limb Bud
Specification of cranial-caudal axis | 626
628 | | Eye Development | 602 | Specification of dorsal-ventral axis | 630 | | Formation of eye field
Formation and morphogenesis of | 602 | Cessation of limb outgrowth and morphogenesis of autopod | 630 | | lens | 604 | Congenital anomalies of limbs | 632 | | Patterning of eye Differentiation of pigmented | 608 | Tissue Origins of Limb Structures | 639 | | epithelium | 610 | Differentiation of Limb Bones | 639 | | Regulation of proliferation and differentiation of retinal | | Innervation of Developing Limb Bud
Specification and projection of limb | 640 | | progenitor cells | 610 | motor axons | 642 | | Abnormalities of eye | 613 | | | | Development of the Limbs | 617 | Figure Credits | 645 | | • | 017 | Index | 653 | | Epithelial-Mesenchymal Interactions | | | | | Control Limb Outgrowth | 619 | | |