
Cell-free Protein Synthesis

Methods and Protocols

Contents

Preface XIII
List of Contributors XVII

1	Cell-free Protein Synthesis Systems: Historical Landmarks,
	Classification, and General Methods 1
	A. S. Spirin and J. R. Swartz
1.1	Introduction: Historical Landmarks 1
1.1.1	Discovery of Protein Synthesis in Cell Extracts 1
1.1.2	Translation of Exogenous Messages 1
1.1.3	Coupled Transcription-translation in Bacterial Extracts 2
1.1.4	Combined Transcription-translation Systems 3
1.1.5	Continuous Flow/Continuous Exchange Principle 3
1.2	Prokaryotic and Eukaryotic Types of Cell-free Expression
	Systems 5
1.2.1	Cell Extracts 5
1.2.1.1	E. coli extract (ECE) 5
1.2.1.2	Wheat Germ Extract (WGE) 6
1.2.1.3	Rabbit Reticulocyte Lysate (RRL) 6
1.2.2	Genetic Constructs (Expression Vectors) 7
1.2.2.1	Prokaryotic Systems 7
1.2.2.2	Eukaryotic Systems 8
1.3	Preparing Cell Extracts 11
1.3.1	E. coli Extracts 11
1.3.1.1	Genetics 11
1.3.1.2	Cell Growth 13
1.3.1.3	Extract Preparation 14
1.3.2	Wheat Germ Extracts 15
1.4	Designing Reaction Composition 16
1.4.1	Mg ²⁺ and Phosphate 16
1.4.2	Other Salts 18
1.4.3	Nucleotides and Amino Acids 18
1.4.4	Stabilization Reagents 18

VΙ	Contents	
	1.4.5	Other Factors 19
	1.5	Providing Energy 19
	1.5.1	Direct Nucleotide Regeneration 20
	1.5.2	Indirect Nucleotide Regeneration 20
	1.6	Enhancing Protein Folding 21
	1.6.1	Temperature Effects 21
	1.6.2	Cell Extract Concentration 23
	1.6.3	Effects of Folding Ligands 23
	1.6.4	Effects of Chaperones and Foldases 24
	1.6.5	Effects of Detergents 24
	2	The Constructive Approach for Cell-free Translation 35 T. Ueda
	2.1	Introduction 35
	2.2	The Process of Protein Synthesis 36
	2.2.1	Polypeptide Synthesis 36
	2.2.2	Protein Maturation 38
	2.3	A Constructive Approach to Protein Synthesis 40
	2.3.1	In Vitro Reconstitution of Polypeptide Synthesis 40
	2.3.2	Protocol of Protein Synthesis using PURE System 41
	2.3.3	Addition of Protein Folding Machinery to the PURE System 42
	2.3.4	Integration of a Membrane Targeting System with the PURE
		system 46
	2.3.5	Protein Synthesis using the PURE System containing Molecular
		Chaperones 48
	2.4	Conclusion 49
	3	Functional Genomic Analysis using Sequential Cell-free Protein
	•	Synthesis 51
		K. A. Woodrow and J. R. Swartz
	3.1	Introduction 51
	3.1.1	The Post-genomic Era 51
	3.1.2	Cell-free Protein Synthesis (CFPS) as a Functional Proteomic

3	Functional Genomic Analysis using Sequential Cell-free Protein Synthesis 51
	K. A. Woodrow and J. R. Swartz
3.1	Introduction 51
3.1.1	The Post-genomic Era 51
3.1.2	Cell-free Protein Synthesis (CFPS) as a Functional Proteomic Tool 52
3.2	Developing an enabling Technology for Sequential Expression Analysis 54
3.2.1	Improving Linear Template Stability 55
3.2.2	Improving PCR Reactions for generating Genomic Linear Templates 56
3.2.3	Optimizing Cofactor Concentrations for Enzyme Activation 58
3.3	Demonstrating Functional Genomic Analysis with CFPS 61
3.3.1	Isolation and Expression of Genomic Targets 62

3.3.2	Effects of Sample Library on β -Lactamase Expression and Activity 62
3.4	Conclusions and Projections 64
4	Cell-free Technology for Rapid Production of Patient-specific Fusion Protein Vaccines 69 A. R. Goerke, J. Yang, G. Kanter, R. Levy and J. R. Swartz
4.1	Introduction 69
4.1.1	Lymphoma and Fusion Protein Vaccine Treatments 69
4.1.2	Comparing Cell-free and In Vivo Production Systems 70
4.2	Developing the Fusion Protein Construct and the Cell-free Production Process 71
4.2.1	Fusion-protein Production in the Cell-free System 71
4.2.2	Oxidized Reaction Conditions and DsbC Increase Soluble Protein Yield 71
4.2.3	GM-CSF is more Active at the N-terminus of the Fusion Protein Vaccine 73
4.2.4	New Linker Improves Fusion Protein Stability 75
4.2.5	Expression and Purification Scale-up for Vaccine Protein Production 77
4.3	Fusion Proteins Raise Protective Antibodies 78
4.3.1	Design of Vaccine Constructs and Mouse Studies 78
4.3.2	Fusion Protein Vaccination Protects against Aggressive Tumors 79
4.3.3	Antibody Generation is enhanced by Fusion Partners 79
4.4	Conclusions and Projections 80
5	Bacterial Cell-free System for Highly Efficient Protein Synthesis T. Kigawa, T. Matsuda, T. Yabuki and S. Yokoyama Overview 83
5.1 5.2	
5.3	Introduction 83 Coupled TranscriptionTranslation System based on <i>E. coli</i> Extract 84
5.4	DNA Template Construction 84
5.5	Preparation of Cell Extract from E. coli 85
5.6	Batch-mode Cell-free Reaction 87
5.7	Dialysis-mode Cell-free Reaction 88
5.8	Template DNA 91
5.9	Reaction Temperature 92
5.10	Surface Area of the Dialysis Membrane 93
5.11	Stable-isotope Labeling for NMR Spectroscopy 93
5.12	Selenomethionine Incorporation for X-Ray Crystallography 94
5.13	Automation 95
5.14	Conclusion 95

6	The Use of the <i>Escherichia coli</i> Cell-free Protein Synthesis for Structural Biology and Structural Proteomics 99
	T. Kigawa, M. Inoue, M. Aoki, T. Matsuda, T. Yabuki, E. Seki,
	T. Harada, S. Watanabe and S. Yokoyama
6.1	Overview 99
6.2	Introduction 100
6.3	High-throughput Expression by PCR-based Small-scale Cell-free Protein Synthesis 100
6.4	Fully Automated Protein Production using Middle-scale Cell-free Protein Synthesis 103
6.5	NMR Screening 104
6.6	Large-scale Protein Production for Structure Determination 105
6.7	Discussion 107
• • •	
7	The Wheat Germ Cell-free Protein Synthesis System 111
,	The Wheat Germ Cell-free Protein Synthesis System 111 T. Sawasaki and Y. Endo
7.1	Overview 111
7.2	Development of a Highly Efficient Eukaryotic Cell-free Protein
7 12.	Synthesis System 111
7.2.1	Preparation of a Highly Active and Robust Extract from Wheat
	Embryos 112
7.2.1.1	Protocol for the Preparation of Wheat Germ Extract [12] 115
7.2.2	mRNA 5' and 3' UTRs which Enhance Translation 115
7.2.3	Split-primer PCR for Genome-wide Generation of DNAs for
	Transcription 119
7.2.3.1	Protocol for "Split-primer" PCR [13] 121
	First PCR 122
7.2.4	Bilayer Translation Reaction Method 122
7.2.5	Transcription and Translation in One Tube 123
7.2.5.1	Protocol for One-tube Protein Synthesis Reaction 124
7.2.6	Reaction Methods for Large-scale Protein Production 125
7.3	Completion of Protocols for the Wheat Cell-free System 126
7.3.1	Performance of the Wheat Cell-free System 127
7.3.2	Robotic Automation of the Cell-free Protein Synthesis 132
7.4	Application to High-throughput Biochemical Annotation of Genetic
	Information 132
7.4.1	Genome-wide Functional Analysis 132
7.4.2	Preparation of Protein for NMR Spectroscopy 134
7.5	Conclusion 136

8	Cell-free Expression of Integral Membrane Proteins for Structural Studies 141
	C. Klammt, D. Schwarz, I. Lehner, S. Sobhanifar, F. Löhr, J. Zeelen, C. Glaubitz, V. Dötsch and F. Bernhard
8.1	Overview 141
8.2	Introduction 141
8.3	Specific Characteristics for the Cell-free Expression of Membrane
0.5	Proteins 143
8.3.1	Cell-free Expression of Membrane Proteins in the Presence of Detergents or Lipids 145
8.3.2	Detergents for the Efficient Resolubilization of Cell-free Produced Membrane Proteins 149
8.4	Case Studies for the High Level Cell-free Expression of Membrane Proteins 150
8.4.1	α -Helical Transporters 150
8.4.2	G-Protein Coupled Receptors 152
8.4.3	β -Barrel Proteins 153
8.5	Structural Characterization of Cell-free Produced Membrane Proteins 154
8.5.1	Crystallization of Cell-free Produced Membrane Proteins 154
8.5.2	Cell-free Expression as a Tool for High-resolution NMR Spectroscopy 155
8.5.3	Applications of Cell-free Expression for Solid-state NMR 159
9	Cell-free Production of Membrane Proteins in the Presence of Detergents 165
	JM. Betton and M. Miot
9.1	Introduction 165
9.2	Histidine Protein Kinases 166
9.3	Materials and Methods 168
9.3.1	Plasmids 168
9.3.2	Cell-free Protein Production 168
9.3.3	Protein Purification 168
9.3.4	Structural and Functional Protein Characterizations 169
9.4	Results and Discussion 169
9.4.1	Analytical Cell-free Production of His ₆ -tagged Proteins 169
9.4.2	Detergents Compatible with Cell-free Synthesis 171
9.4.3	Fidelity of <i>In Vitro</i> Biosynthesis Reactions in the Presence of Brij35 173
9.4.4	High-level Production of Functional HPKs in CECF Technology 174
9.5	Conclusions 177

10	Novel Techniques using PCR and Cell-free Protein Synthesis Systems for Combinatorial Bioengineering 179
	H. Nakano and T. Yamane
10.1	Introduction 179
10.2	Improvements in the <i>Escherichia coli</i> Cell-free Protein Synthesis Systems 180
10.3	High-throughput Construction of a Protein Library by SIMPLEX 180
10.3.1	Development of SIMPLEX 180
10.3.2	Quality of the SIMPLEX-based Protein Library 182
10.3.3	Expansion of the SIMPLEX-based Library 182
10.3.4	Application of SIMPLEX for Combinatorial Engineering of Proteins 184
10.4	Development and Application of SICREX 186
10.5	Conclusion 188
11	Gene Cloning and Expression in Molecular Colonies 191
	A. B. Chetverin, T. R. Samatov and H. V. Chetverina
11.1	A Gap in Cell-free Biotechnology 191
11.2	Molecular Colony Technique 192
11.3	Gene Cloning in Molecular Colonies 193
11.4	Gene Expression in Molecular Colonies: Transcription 196
11.5	Gene Expression in Molecular Colonies: Translation 196
11.6	Gene Expression in Molecular Colonies: The Role of Thiol Compounds 198
11.7	Conclusions 200
11.8	Molecular Colony Protocols 201
11.8.1	Amplification Gels 201
11.8.2	Growing DNA Colonies 202
11.8.3	Detection of Molecular Colonies 202
11.8.4	Transcription in Molecular Colonies 203
11.8.5	Protein Synthesis in Molecular Colonies 203
12	Large-Scale Batch Reactions for Cell-free Protein Synthesis 207
10.1	A. M. Voloshin and J. R. Swartz
12.1	Introduction 207
12.1.1	Cell-free Protein Synthesis 207
12.1.2	Comparing Cell-free Reaction Configurations; Advantages of Batch Mode 208
12.2	Challenges for Extending Batch Duration and Productivity 210
12.2.1	Providing Energy 210
12.2.2	Stabilizing the Substrates 213
12.3	Scale-up of Reactions not Requiring Oxygen in Batch Mode 216
12.3.1	Test-tube Scale-up Results are Disappointing 216

12.3.2	Thin-film Format Conserves Performance 216
12.3.3	Investigating Fundamental Influences 218
12.4	Scale-up of Reactions Requiring Oxygen 218
12.4.1	Test-tube Scale up is Disastrous 218
12.4.2	Thin-film Format Conserves Performance 222
12.4.3	Stirred Tank Aerated Reactor Format Requires Antifoaming
	Agents 222
12.4.4	Enhanced O ₂ Transfer Increases ATP Concentrations 226
12,4.5	Protein Production in 1-liter Batch Reactions 228
12.5	Conclusions and Projections 231
12.5.1	Personalized Medicine 231
12.5.2	Large-scale Pharmaceutical Production 232

Index 237