

Fundamentals of Thermal-Fluid Sciences

Yunus A. Çengel Robert H. Turner John M. Cimbala

CONTENTS

Preface xv Nomenclature xxiii

CHAPTER ONE

INTRODUCTION AND OVERVIEW 1

-1 Introduction	to '	Thermal-Fluid Sciences	2
madaction	w	I IICI III al-1 Iulu Delelices	_

- **1–2** Thermodynamics 3
- 1-3 Heat Transfer 5
- **1–4** Fluid Mechanics 6
- **1–5** Importance of Dimensions and Units 7
- **1–6** Problem-Solving Technique 13

Summary 18 References and Suggested Readings 18 Problems 18

PART 1 THERMODYNAMICS 21

CHAPTER TWO

INTRODUCTION AND BASIC CONCEPTS 23

2–1	Systems	and	Control	Volumes	24
-----	---------	-----	---------	---------	----

- **2–2** Properties of a System 25
- **2–3** Density and Specific Gravity 26
- **2–4** State and Equilibrium 27
- **2–5** Processes and Cycles 28
- **2–6** Temperature and the Zeroth Law of Thermodynamics 30
- **2–7** Pressure 35
- **2–8** Pressure Measurement Devices 39

Summary 47 References and Suggested Readings 48 Problems 48

CHAPTER THREE

ENERGY, ENERGY TRANSFER, AND GENERAL ENERGY ANALYSIS 59

- **3–2** Forms of Energy 61
- **3–3** Energy Transfer by Heat 68
- **3–4** Energy Transfer by Work 70
- **3–5** Mechanical Forms of Work 74
- **3–6** The First Law of Thermodynamics 78
- **3–7** Energy Conversion Efficiencies 86
- **3–8** Energy and Environment 94

Summary 100 References and Suggested Readings 100 Problems 101

CHAPTER FOUR PROPERTIES OF PURE SUBSTANCES 111

- **4–1** Pure Substance 112
- **4–2** Phases of a Pure Substance 112
- **4–3** Phase-Change Processes of Pure Substances 113
- **4–4** Property Diagrams for Phase-Change Processes 118
- **4–5** Property Tables 126
- **4–6** The Ideal-Gas Equation of State 137
- **4–7** Compressibility Factor—A Measure of Deviation from Ideal-Gas Behavior 139
- **4–8** Other Equations of State 144

Summary 149
References and Suggested Readings 150
Problems 150

X	Fundamentals of Thermal-Fluid Sciences	s	
	APTER FIVE GY ANALYSIS OF CLOSED SYSTEMS	108	The Thermodynamic Temperature Scale 277 The Carnot Heat Engine 279 The Carnot Refrigerator and Heat Pump 283
5–1 5–2 5–3	Moving Boundary Work 160 Energy Balance for Closed Systems 167 Specific Heats 172		Summary 285 References and Suggested Readings 286 Problems 286
5–4 5–5	Internal Energy, Enthalpy, and Specific Heats of Ideal Gases 174 Internal Energy, Enthalpy, and Specific Heats of Solids and Liquids 183		APTER EIGHT ROPY 297
	Summary 187 References and Suggested Readings 188 Problems 188	8-1 8-2 8-3 8-4	Entropy 298 The Increase of Entropy Principle 301 Entropy Change of Pure Substances 305 Isentropic Processes 309
	APTER SIX S AND ENERGY ANALYSIS OF CONTROL MES 201	8–5 . 8–6 8–7 8–8	Property Diagrams Involving Entropy 310 What is Entropy? 312 The <i>T ds</i> Relations 316 Entropy Change of Liquids and Solids 317
6-1 6-2 6-3 6-4 6-5		8-9 8-10 8-11 212 215	The Entropy Change of Ideal Gases 320 Reversible Steady-Flow Work 328 Minimizing the Compressor Work 332 Isentropic Efficiencies of Steady-Flow Devices 336 Entropy Balance 343 Summary 354 References and Suggested Readings 355 Problems 356
	APTER SEVEN SECOND LAW OF THERMODYNAMICS	PAR [*] 253	T 2 FLUID MECHANICS 373
7–1 7–2 7–3	Introduction to the Second Law 254 Thermal Energy Reservoirs 255 Heat Engines 256		APTER NINE RODUCTION TO FLUID MECHANICS 375
7–4 7–5 7–6 7–7	Refrigerators and Heat Pumps 261 Perpetual-Motion Machines 267 Reversible and Irreversible Processes 270 The Carnot Cycle 273	9-1 9-2 9-3 9-4	The No-Slip Condition 376 Classification of Fluid Flows 377 A Brief History of Fluid Mechanics 381 Vapor Pressure and Cavitation 384

9~5

Compressibility and Speed of Sound 385

7-8

The Carnot Principles 275

9–6	Viscosity 388	CHAPTER THIRTEEN
9–7	Surface Tension and Capillary Effect 391	MOMENTUM ANALYSIS OF
	Summary 396 References and Suggested Readings 396 Problems 397	FLOW SYSTEMS 493
		13-1 Newton's Laws 494
		13–2 Choosing a Control Volume 495
СН	APTER TEN	13–3 Forces Acting on a Control Volume 496
FLUID	STATICS 403	13–4 The Linear Momentum Equation 498
LOID		13–5 Review of Rotational Motion and Angular
10–1	Introduction 404	Momentum 509
10-2	Hydrostatic Forces on Submerged Plane	13–6 The Angular Momentum Equation 511
	Surfaces 404	Summary 519 References and Suggested Readings 520
10–3	Hydrostatic Forces on Submerged Curved Surfaces 409	Problems 520
10 -4	Buoyancy and Stability 412	CHAPTER FOURTEEN
	Summary 418 References and Suggested Readings 419 Problems 419	INTERNAL FLOW 531
		14–1 Introduction 532
		14–2 Laminar and Turbulent Flows 533
СН	APTER ELEVEN	14–3 The Entrance Region 535
FLUID	KINEMATICS 425	14–4 Laminar Flow in Pipes 537
	, MALIIMATION ILO	14–5 Turbulent Flow in Pipes 544
11–1	Lagrangian and Eulerian Descriptions 426	14–6 Minor Losses 552
11–2	Flow Patterns and Flow Visualization 431	14–7 Piping Networks and Pump Selection 559
11-3	Vorticity and Rotationality 437	Summary 568
11–4	The Reynolds Transport Theorem 441 Summary 445	References and Suggested Readings 569 Problems 570
	References and Suggested Readings 446	
	Problems 446	CHAPTER FIFTEEN
		EXTERNAL FLOW: DRAG AND LIFT 579
СН	APTER TWELVE	15–1 Introduction 580
BERN	OULLI AND ENERGY EQUATIONS 455	15–2 Drag and Lift 581
		15–3 Friction and Pressure Drag 584
12-1	Mechanical Energy and Efficiency 456	15–4 Drag Coefficients of Common Geometries 588
12-2	The Bernoulli Equation 460	15–5 Parallel Flow Over Flat Plates 595
12–3	General Energy Equation 471	15–6 Flow Over Cylinders and Spheres 600
12–4	Energy Analysis of Steady Flows 476	15–7 Lift 604
	Summary 483 References and Suggested Readings 484 Problems 484	Summary 612 References and Suggested Readings 613 Problems 614

PART 3 HEAT TRANSFER 623

CHAPTER SIXTEEN

MECHANISMS OF HEAT TRANSFER 625

16–1	Introduction	626
10-1	muoducuon	020

- **16–2** Conduction 626
- **16–3** Convection 634
- **16–4** Radiation 635
- **16–5** Simultaneous Heat Transfer Mechanisms 638

Summary 643

References and Suggested Readings 644

Problems 644

CHAPTER SEVENTEEN

STEADY HEAT CONDUCTION 653

- 17-1 Steady Heat Conduction in Plane Walls 654
- 17–2 Thermal Contact Resistance 664
- **17–3** Generalized Thermal Resistance Networks 669
- **17–4** Heat Conduction in Cylinders and Spheres 672
- **17–5** Critical Radius of Insulation 678
- 17-6 Heat Transfer from Finned Surfaces 681
- 17–7 Heat Transfer in Common Configurations 696

Summary 701

References and Suggested Readings 703

Problems 703

CHAPTER EIGHTEEN

TRANSIENT HEAT CONDUCTION 723

- **18–1** Lumped System Analysis 724
- 18–2 Transient Heat Conduction in Large Plane Walls, Long Cylinders, and Spheres with Spatial Effects 730
- **18–3** Transient Heat Conduction in Semi-Infinite Solids 746
- **18-4** Transient Heat Conduction in Multidimensional Systems 754

Summary 762

References and Suggested Readings 763

Problems 764

CHAPTER NINETEEN FORCED CONVECTION 777

- 19-1 Physical Mechanism of Convection 778
- **19–2** Thermal Boundary Layer 781
- **19–3** Parallel Flow Over Flat Plates 782
- **19–4** Flow Across Cylinders and Spheres 789
- **19–5** General Considerations for Pipe Flow 794
- **19–6** General Thermal Analysis 798
- **19–7** Laminar Flow in Tubes 803
- **19–8** Turbulent Flow in Tubes 808

Summary 815

References and Suggested Readings 816

Problems 817

CHAPTER TWENTY

NATURAL CONVECTION 833

- **20–1** Physical Mechanism of Natural Convection 834
- **20–2** Equation of Motion and the Grashof Number 837
- **20–3** Natural Convection Over Surfaces 840
- **20–4** Natural Convection from Finned Surfaces and PCBs 847
- **20–5** Natural Convection Inside Enclosures 851

Summary 861

References and Suggested Readings 862

Problems 863

CHAPTER TWENTY-ONE

RADIATION HEAT TRANSFER 875

- 21-1 Introduction 876
- 21-2 Thermal Radiation 877
- **21–3** Blackbody Radiation 879
- **21–4** Radiative Properties 885
- **21–5** The View Factor 893
- **21–6** Radiation Heat Transfer: Black Surfaces 907
- **21–7** Radiation Heat Transfer: Diffuse, Gray Surfaces 909

Summary 922

References and Suggested Readings 924

Problems 924

	Contents xiii
	Contents XIII
Table A-8	Saturated ice—water vapor 1003
Figure A–9	T-s diagram for water 1004
Figure A-10	Mollier diagram for water 1005
Table A-11	Saturated refrigerant-134a— Temperature table 1006
Table A-12	Saturated refrigerant-134a— Pressure table 1008
Table A-13	Superheated refrigerant-134a 1009
Figure A-14	P-h diagram for refrigerant-134a 1011
Table A-15	Properties of saturated water 1012
Table A-16	Properties of saturated refrigerant-134a 1013
Table & 17	<u> </u>
Table A-17	Properties of saturated ammonia 1014
Table A-18	Properties of saturated propane 1015
Table A-19	Properties of liquids 1016
Table A-20	Properties of liquid metals 1017
Table A-21	Ideal-gas properties of air 1018
Table A-22	Properties of air at 1 atm pressure 1020
Table A-23	Properties of gases at 1 atm pressure 1021
Table A-24	Properties of solid metals 1023
Table A-25	Properties of solid non-metals 1026
Table A-26	Emissivities of surfaces 1027

Index 1031

Figure A-28

Figure A-27 The Moody Chart 1029

Nelson-Obert generalized

compressibility chart 1030

CHAPTER TWENTY-TWO HEAT EXCHANGERS 935

22–1 Types of Heat Exchangers 936

22–2 The Overall Heat Transfer Coefficient 938

22–3 Analysis of Heat Exchangers 946

22-4 The Log Mean Temperature Difference Method 948

22–5 The Effectiveness–NTU Method 957

22-6 Selection of Heat Exchangers 968

Summary 971 References and Suggested Readings 972 Problems 973

APPENDIX 1

Table A-7

PROPERTY TABLES AND CHARTS 987

Table A-1 Molar mass, gas constant, and critical-point properties 988 Table A-2 Ideal-gas specific heats of various common gases 989 Table A-3 Properties of common liquids, solids, and foods 992 Table A-4 Saturated water—Temperature table 994 Table A-5 Saturated water—Pressure table 996 Table A-6 Superheated water 998

Compressed liquid water 1002