
Power Quality in Power Systems and Electrical Machines

Ewald F. Fuchs Mohammad A. S. Masoum

Contents

Solutions to many of the examples in each chapter can be found in Appendix 7.				1.4.15	Telephone Form Factor (TFF) 21
				1.4.16	Distortion Index (DIN) 22
				1.4.17	Distortion Power (D) 22
		CHAPTER 1		1.4.18	Application Example 1.1: Calculation
	Ir	ntroduction to Power Quality			of Input/Output Currents and
		1			Voltages of a Three-Phase Thyristor
					Rectifier 23
1.1	DEFIN	NITION OF POWER QUALITY 1		1.4.19	Application Example 1.2: Calculation
1.2	CAUS	ES OF DISTURBANCES IN POWER			of Input/Output Currents and
	SYSTE				Voltages of a Three-Phase Rectifier
1.3	CLASS	SIFICATION OF POWER QUALITY			with One Self-Commutated Electronic
	ISSUE	S 3			Switch 24
	1.3.1	Transients 4		1.4.20	Application Example 1.3: Calculation
	1.3.2	Short-Duration Voltage Variations 4			of Input Currents of a Brushless DC
	1.3.3	Long-Duration Voltage Variations 7			Motor in Full-on Mode (Three-Phase
	1.3.4	Voltage Imbalance 8			Permanent-Magnet Motor Fed by a
	1.3.5	Waveform Distortion 8			Six-Step Inverter) 25
	1.3.6	Voltage Fluctuation and Flicker 12		1.4.21	Application Example 1.4: Calculation
	1.3.7	Power–Frequency Variations 12			of the Efficiency of a Polymer
1.4	FORM	IULATIONS AND MEASURES			Electrolyte Membrane (PEM) Fuel
	USED	FOR POWER QUALITY 13			Cell Used as Energy Source for a
	1.4.1	Harmonics 13			Variable-Speed Drive 26
	1.4.2	The Average Value of a		1.4.22	Application Example 1.5: Calculation
		Nonsinusoidal Waveform 18			of the Currents of a Wind Power
	1.4.3	The rms Value of a Nonsinusoidal			Plant PWM Inverter Feeding Power
		Waveform 18			into the Power System 26
	1.4.4	Form Factor (FF) 19	1.5	EFFE	CTS OF POOR POWER QUALITY
	1.4.5	Ripple Factor (RF) 19		ON PO	OWER SYSTEM DEVICES 29
	1.4.6	Harmonic Factor (HF) 19	1.6	STAN	DARDS AND GUIDELINES
	1.4.7	Lowest Order Harmonic (LOH) 19		REFE	RRING TO POWER
	1.4.8	Total Harmonic Distortion		QUAL	LITY 29
		(THD) 19		1.6.1	IEC 61000 Series of Standards for
	1.4.9	Total Interharmonic Distortion			Power Quality 30
		(TIHD) 20		1.6.2	IEEE-519 Standard 32
	1.4.10	Total Subharmonic Distortion	1.7	HARN	MONIC MODELING
		(TSHD) 20		PHILO	OSOPHIES 34
	1.4.11	Total Demand Distortion		1.7.1	Time-Domain Simulation 35
		(TDD) 20		1.7.2	Harmonic-Domain
	1.4.12	Telephone Influence Factor			Simulation 35
		(TIF) 20		1.7.3	Iterative Simulation
	1.4.13	C-Message Weights 20			Techniques 35
	1.4.14	V·T and I·T Products 21		1.7.4	Modeling Harmonic Sources 36

1.8	POWE	R QUA	LITY IMPROVEMENT				Phase Shift between
	TECH	NIQUES	36				Fundamental and Harmonic
	1.8.1	High Po	ower Quality Equipment				Voltages 59
		Design	36		2.2.4	Loss Me	easurement 59
	1.8.2	Harmor	ic Cancellation 36			2.2.4,1	Indirect Loss
	1.8.3	Dedicat	ed Line or Transformer 37				Measurement 60
		1.8.3.1	Application Example 1.6:			2.2.4.2	Direct Loss
			Interharmonic Reduction				Measurement 60
			by Dedicated			2.2.4.3	Application Example 2.3:
			Transformer 37				Application of the Direct-
	1.8.4	Optima	l Placement and Sizing of				Loss Measurement Technique
		Capacit	or Banks 38				to a Single-Phase
	1.8.5	Deratin	g of Power System				Transformer 60
		Devices		2.3	DER <i>A</i>	ATING O	F SINGLE-PHASE
	1.8.6	Harmon	nic Filters, APLCs, and		TRAN	ISFORM	ERS 60
		UPQCs			2.3.1	Deratin	g of Transformers
		1.8.6.1	Application Example 1.7:			Determ	ined from Direct-Loss
			Hand Calculation of			Measur	ements 61
			Harmonics Produced		2.3.2	Deratin	g of Transformers Determined
			by Twelve-Pulse			from the	e K-Factor 62
			Converters 41		2.3.3	Deratin	g of Transformers Determined
		1.8.6.2	Application Example 1.8:				e F _{HL} -Factor 63
			Filter Design to Meet IEEE-			2.3.3.1	Application Example 2.4:
			519 Requirements 41				Sensitivity of K- and F _{HL} -
		1.8.6.3	Application Example 1.9:				Factors and Derating of
			Several Users on a Single				25 kVA Single-Phase Pole
			Distribution Feeder 41				Transformer with Respect to
1.9	SUMI	MARY	42				the Number and Order of
	PROE		44				Harmonics 63
		RENCE	S 52			2,3.3,2	Application Example 2.5:
			L BIBLIOGRAPHY 54				K- and F _{HL} -Factors and
1.12	2 2 111/1/2						Their Application to
			2				Derating of 25 kVA Single-
			CHAPTER 2				Phase Pole Transformer
	Ha	rmonic N	Models of Transformers				Loaded by Variable-Speed
			55				Drives 64
2.1	SINII	SOIDAL	(LINEAR) MODELING OF	2.4	NON	LINEAR	HARMONIC MODELS OF
2.1		NSFORM	•			NSFORM	
2.2			LOSSES IN		2.4.1		eneral Harmonic Model of
2.2		NSFORM				Transfo	
	2.2.1	Skin E			2.4.2		ear Harmonic Modeling of
	2.2.2		nity Effect 57				ormer Magnetic Core 66
	2.2.3		tic Iron-Core (Hysteresis and			2.4.2.1	Time-Domain Transformer
	L.L.J	Ų.	Current) Losses 57				Core Modeling by
			Application Example 2.1:				Multisegment Hysteresis
		2.2.3.1	Relation between Voltages				Loop 66
			and Flux Linkages for 0°			2.4.2.2	Frequency- and Time-
			Phase Shift between				Domain Transformer Core
			Fundamental and Harmonic				Modeling by Saturation
			Voltages 57				Curve and Harmonic Core-
		2.2.3.2					Loss Resistances 66
		2.2.3.2	Relation between Voltages			2.4.2.3	Time-Domain Transformer
			and Flux Linkages for 180°			_	Coil Modeling by Saturation

		2.4.2.4	Curve and a Constant Core- Loss Resistance 67 Frequency-Domain		2.6.5 2.6.6		System Effects of GIC 82 Model for Calculation of 83
			Transformer Coil Modeling by Harmonic Current		2.6.7	GIC	ion Techniques for 84
		2.4.2.5	Sources 67 Frequency-Domain	2.7	2.6.8 GROU	Conclu J NDIN C	sions Regarding GIC 84 G 84
			Transformer Coil		2.7.1	System	Grounding 84
			Modeling by Describing			2.7.1.1	Factors Influencing Choice of
			Functions 68				Grounded or Ungrounded
	2.4.3		Oomain Simulation of Power				System 84
		Transfo				2.7.1.2	Application Example 2.9:
		2.4.3.1	State-Space				Propagation of a Surge
			Formulation 70				through a Distribution
	*	2.4.3.2.	Transformer Steady-State				Feeder with an Insulator
			Solution from the Time-				Flashover 87
		_	Domain Simulation 72			2.7.1.3	Application Example 2.10:
	2.4.4	-	ncy-Domain Simulation of				Lightning Arrester
			Transformers 72				Operation 87
	2.4.5		ned Frequency- and Time-		2.7.2		nent Grounding 88
			n Simulation of Power		2.7.3		Grounding 88
		Transfo			2.7.4		etion to Earth 89
	2.4.6		cal (Finite-Difference, Finite-		2.7.5		tion of Magnetic
			t) Simulation of Power	* 0		Forces	89
~		Transfo		2.8			ENT OF DERATING OF
2.5			NANCE OF POWER			E-PHAS	SE TRANSFORMERS
		SFORM			89		
	2.5.1	-	Conditions Susceptible		2.8.1	Approa	
			butive, Conducive) to			2.8.1.1	Three-Phase Transformers in
	252		esonance 76				Δ-Δ or Y-Y Ungrounded
	2.5.2		ormer Connections and			0.010	Connection 90
		Load	Phase (Pole) Switching at No 76			2.8.1.2	Three-Phase Transformers in Δ -Y Connection 91
		2.5.2.1	Application Example 2.6: Susceptibility of Transformers			2.8.1.3	Accuracy Requirements for Instruments 92
			to Ferroresonance 78			2.8.1.4	Comparison of Directly
	2.5.3	•	o Avoid Ferroresonance 78				Measured Losses with
		2.5.3.1	Application Example 2.7:				Results of No-Load and
			Calculation of				Short-Circuit Tests 93
			Ferroresonant Currents		2.8.2		VA Three-Phase
•			within Transformers 79				ormer Bank #1 Feeding Full-
2.6			SOLAR-GEOMAGNETIC				Rectifier 94
			CES ON POWER SYSTEMS		2.8.3		VA Three-Phase Transformer
			FORMERS 81				2 Supplying Power to Six-Step
	2.6.1		ation Example 2.8: Calculation			Inverte	
	0.60	-	netic Field Strength \hat{H} 81		2.8.4		VA Three-Phase Transformer
	2.6.2		Origins of Geomagnetic				ing Power to Resonant
	262	Storms			202	Rectific	
	2.6.3	-	t Cycles and Geomagnetic-		2.8.5		VA Three-Phase Transformer
	264		pance Cycles 82				Absorbing Power from a PWM
	2.6.4		Surface Potential (ESP) and		207	Inverte	
			gnetically Induced Current		2.8.6		sion of Results and
		(GIC)	82			Conclu	sions 97

X Contents

	2.8.6.1	Discussion of Results 97		3.6.3	The Reflected Harmonic Slip of an
	2.8.6.2	Comparison with Existing			Induction Machine 125
		Techniques 98		3.6.4	Reflected Harmonic Slip of an
2.9	SUMMARY	98			Induction Machine in Terms of
2.10	PROBLEMS	98			Fundamental Slip 126
2.11	REFERENCES	5 104		3.6.5	Reflected Harmonic Slip of an
2.12	ADDITIONAL	BIBLIOGRAPHY 107			Induction Machine in Terms of
					Harmonic Slip 127
			3.7	MEAS	UREMENT RESULTS FOR
	C	HAPTER 3		THRE	E- AND SINGLE-PHASE
М		lysis of Induction Machines		INDUC	CTION MACHINES 127
		109		3.7.1	Measurement of Nonlinear Circuit
					Parameters of Single-Phase Induction
3.1	COMPLETE S	INUSOIDAL EQUIVALENT			Motors 128
	CIRCUIT OF	A THREE-PHASE			3.7.1.1 Measurement of
	INDUCTION I	MACHINE 110			Current and Voltage
	3.1.1 Applica	tion Example 3.1: Steady-			Harmonics 130
	State O	peration of Induction Motor			3.7.1.2 Measurement of Flux-
	at Unde	ervoltage 112			Density Harmonics in Stator
	3.1.2 Applica	tion Example 3.2: Steady-			Teeth and Yokes (Back
	State O	peration of Induction Motor			Iron) 130
		voltage 112		3.7.2	Application Example 3.6:
	3.1.3 Applica	ation Example 3.3: Steady-			Measurement of Harmonics within
		peration of Induction Motor			Yoke (Back Iron) and Tooth Flux
	at Und	ervoltage and Under-			Densities of Single-Phase Induction
	Freque	ncy 113			Machines 132
3.2	MAGNETIC F	TELDS OF THREE-PHASE	3.8		R- AND SUBHARMONIC TORQUES
	MACHINES F	OR THE CALCULATION			IREE-PHASE INDUCTION
	OF INDUCTIV	VE MACHINE		MACI	
	PARAMETER	RS 113		3.8.1	Subharmonic Torques in a
3.3	STEADY-STA	TE STABILITY OF A			Voltage-Source-Fed Induction
	THREE-PHAS	SE INDUCTION MACHINE			Motor 132
	118			3.8.2	Subharmonic Torques in a
	3.3.1 Applies	ation Example 3.4: Unstable			Current-Source-Fed Induction
	and Sta	able Steady-State Operation of			Motor 133
	Inducti	on Machines 118		3.8.3	Application Example 3.7:
	3.3.2 Applic	ation Example 3.5: Stable			Computation of Forward-Rotating
	Steady	State Operation of Induction			SubharmonicTorque in Voltage-
	Machin	nes 118			Source-Fed Induction Motor 134
	3.3.3 Resolv	ing Mismatch of Wind-Turbine		3.8.4	Application Example 3.8: Rationale
	and Va	riable-Speed Generator			for Limiting Harmonic Torques in an
	Torque	e-Speed Characteristics 118			Induction Machine 134
3.4	SPATIAL (SP	ACE) HARMONICS OF A		3.8.5	Application Example 3.9:
	THREE-PHA	SE INDUCTION MACHINE			Computation of Forward-
	120				Rotating Subharmonic Torque in
3.5	TIME HARM	ONICS OF A THREE-			Current-Source-Fed Induction
	PHASE INDU	OCTION MACHINE 122			Motor 134
3.6	FUNDAMEN	TAL AND HARMONIC	3.9		RACTION OF SPACE AND TIME
	TORQUES O	F AN INDUCTION			MONICS OF THREE-PHASE
	MACHINE	123		INDU	ICTION MACHINES 134
	3.6.1 The Fu	andamental Slip of an Induction		3.9.1	Application Example 3.10:
	Machi	·			Computation of Rotating MMF
	3.6.2 The H	armonic Slip of an Induction			with Time and Space

Machine

124

134

Harmonics

	3.9.2	Application Example 3.11:		4.1.1	Electrical Equations of a Synchronous Machine 156
		Computation of Rotating MMF with		412	· ·
		Even Space Harmonics 135		4.1.2	Mechanical Equations of a Synchronous Machine 157
	3.9.3	Application Example 3.12:		412	- 3
		Computation of Rotating MMF		4.1.3	Magnetic Saturation of a Synchronous Machine 158
		with Noninteger Space		111	
	~~~~	Harmonics 135		4.1.4	Sinusoidal Model of a Synchronous Machine in do0 Coordinates 158
		LUSIONS CONCERNING	4.2	CTE A	*
		CTION MACHINE	4.2		DY-STATE, TRANSIENT, AND RANSIENT OPERATION 158
		MONICS 135		4.2.1	Definition of Transient and
3.11		AGE-STRESS WINDING		4.2.1	Subtransient Reactances as a
		JRES OF AC MOTORS FED BY			
		ABLE-FREQUENCY, VOLTAGE-			Function of Leakage and Mutual
		CURRENT-SOURCE PWM		400	Reactances 160
		RTERS 136		4.2.2	Phasor Diagrams for Round-Rotor
	3.11.1	Application Example 3.13: Calculation			Synchronous Machines 164
		of Winding Stress Due to PWM			4.2.2.1 Consumer (Motor) Reference
		Voltage-Source Inverters 137			Frame 164
	3.11.2	Application Example 3.14: Calculation			4.2.2.2 Generator Reference
		of Winding Stress Due to PWM			Frame 164
		Current-Source Inverters 139			4.2.2.3 Similarities between
3.12		INEAR HARMONIC MODELS			Synchronous Machines
		IREE-PHASE INDUCTION			and Pulse-Width-Modulated
	MACE				(PWM) Current-Controlled,
	3.12.1	Conventional Harmonic Model of an			Voltage-Source
		Induction Motor 141			Inverters 165
	3.12.2				4.2.2.4 Phasor Diagram of a
		Model of an Induction Motor 141			Salient-Pole Synchronous
	3.12.3	•			Machine 165
		Model of an Induction Motor 142		4.2.3	Application Example 4.1: Steady-
	3.12.4	Spectral-Based Harmonic Model of an			State Analysis of a Nonsalient-Pole
		Induction Machine with Time and			(Round-Rotor) Synchronous
		Space Harmonics 142			Machine 167
3.13	STAT	IC AND DYNAMIC ROTOR		4.2.4	Application Example 4.2: Calculation
	ECCE	NTRICITY OF THREE-PHASE			of the Synchronous Reactance X _s of a
	INDU	CTION MACHINES 143			Cylindrical-Rotor (Round-Rotor,
3.14	OPER	ATION OF THREE-PHASE			Nonsalient-Pole) Synchronous
	MACE	HINES WITHIN A SINGLE-PHASE			Machine 167
	POWE	ER SYSTEM 144		4.2.5	Application Example 4.3: dq0
3.15	CLAS	SIFICATION OF THREE-PHASE			Modeling of a Salient-Pole
		CTION MACHINES 144			Synchronous Machine 169
	SUMN			4.2.6	Application Example 4.4: Calculation
3.17	PROB	BLEMS 145			of the Amortisseur (Damper
3.18	REFE	RENCES 150			Winding) Bar Losses of a
3.19	ADDI	ITIONAL BIBLIOGRAPHY 153			Synchronous Machine during a
					Balanced Three-Phase Short-
		CHAPTER 4			Circuit, Line-to-Line Short-Circuit,
Mo	deling -	and Analysis of Synchronous Machines			Out-of-Phase Synchronization,
.,,0	-viiig i	155			and Unbalanced Load Based on
		133			the Natural abc Reference
4.1		SOIDAL STATE-SPACE			System 169
	MOD:	ELING OF A		4.2.7	Application Example 4.5: Measured

Voltage Ripple of a 30 kVA

Permanent-Magnet Synchronous

SYNCHRONOUS MACHINE IN

156

THE TIME DOMAIN

xii Contents

	4.2.8	Machine, Designed for a Direct-Drive Wind-Power Plant 170 Application Example 4.6: Calculation of Synchronous Reactances $X_d$ and $X$		-	onous Machine Model with nic Parameters 182 Application Example 4.10: Harmonic Modeling of a 24-
	4.2.9	from Measured Data Based on Phaso Diagram 170 Application Example 4.7: Design of a Low-Speed 20 kW Permanent-	r	4.3,3,2	Bus Power System with Asymmetry in Transmission Lines 183 Application Example 4.11:
		Magnet Generator for a Wind-Power Plant 171			Harmonic Modeling of a 24-Bus Power System with a
	4.2.10	Application Example 4.8: Design of a 10 kW Wind-Power Plant Based on a		0 1	Nonlinear Static VAr Compensator (SVC) 184
	4.2.11	Synchronous Machines Supplying Nonlinear Loads 174	4.3.4	•	onous Machine Harmonic with Imbalance and Saturation 184
	4.2.12	Switched-Reluctance Machine 175		4.3.4.1	Synchronous Machine Harmonic Model Based on
	4.2.13	Some Design Guidelines for Synchronous Machines 175		4.3.4.2	dq0 Coordinates 186 Synchronous Machine
		4.2.13.1 Maximum Flux Densities 175			Harmonic Model Based on abc Coordinates 187
		4.2.13.2 Recommended Current Densities 175		4.3.4.3	Computation of Synchronous Machine
		4.2.13.3 Relation between Induced $E_{phase}$ and Terminal $V_{phase}$			Injected Harmonic Currents [I _{nl} (h)] 188
		Voltages 175 4.2.13.4 Iron-Core Stacking Factor an	d	4.3.4.4	Application Example 4.12: Effect of Frequency
	4.2.14	Copper-Fill Factor 175 Winding Forces during Normal Operation and Faults 175			Conversion on Synchronous Machine Negative-Sequence Impedance 190
4.3	HARN	4.2.14.1 Theoretical Basis 177  MONIC MODELING OF A		4.3.4.5	Application Example 4.13: Effect of Imbalance on
1.2		HRONOUS MACHINE 177  Model of a Synchronous Machine as			Power Quality of Synchronous
	.,•	Applied to Harmonic Power Flow 178		4.3.4.6	Machines 190 Application Example 4.14:
		4.3.1.1 Definition of Positive-, Negative-, and Zero- Sequence Impedances/ Reactances 179			Effect of Delta Connection on Power Quality of Synchronous Machines 191
		4.3.1.2 Relations between Positive-, Negative-, and Zero- Sequence Reactances and		4.3.4.7	Application Example 4.15: Effect of Saturation on Power Quality of
		Synchronous, Transient, and Subtransient Reactances 180		4.3.4.8	Synchronous Machines 191 Application Example 4.16:
	4.3.2	Synchronous Machine Harmonic Model Based on Transient Inductances 180			Impact of Nonlinear Loads on Power Quality of Synchronous
		4.3.2.1 Application Example 4.9:			Machines 192
		Measured Current	4.3.5	Static-	and Dynamic-Rotor
		Spectrum of a Synchronous Machine 182		Eccent	ricities Generating Current and e Harmonics 192

Contents

	4.3.6 Shaft Flux and Bearing	5.5	FREQUENCY AND CAPACITANCE
	Currents 194		SCANNING 217
	4.3.7 Conclusions 194		5.5.1 Application Example 5.7: Frequency
	SUMMARY 194		and Capacitance Scanning 218
	PROBLEMS 195	5.6	HARMONIC CONSTRAINTS FOR
	REFERENCES 204		CAPACITORS 218
1.7	ADDITIONAL BIBLIOGRAPHY 207		5.6.1 Harmonic Voltage Constraint for Capacitors 219
			5.6.2 Harmonic Current Constraint for
			Capacitors 219
	CHAPTER 5		5.6.3 Harmonic Reactive-Power Constraint
	Interaction of Harmonics with Capacitors		for Capacitors 219
	209		5.6.4 Permissible Operating Region for
			Capacitors in the Presence of
5.1	APPLICATION OF CAPACITORS TO		Harmonics 220
	POWER-FACTOR CORRECTION 209		5.6.5 Application Example 5.8: Harmonic
	5.1.1 Definition of Displacement Power		Limits for Capacitors when Used in a
	Factor 210		Three-Phase System 220
	5.1.2 Total Power Factor in the Presence of	5.7	EQUIVALENT CIRCUITS OF
	Harmonics 211		CAPACITORS 221
	5.1.2.1 Application Example 5.1:		5.7.1 Application Example 5.9: Harmonic
	Computation of		Losses of Capacitors 222
	Displacement Power Factor	5.8	SUMMARY 222
	(DPF) and Total Power		PROBLEMS 223
	Factor (TPF) 212	5.10	REFERENCES 226
	5.1.3 Benefits of Power-Factor		
	Correction 212		
5.2	APPLICATION OF		CHAPTER 6
	CAPACITORS TO REACTIVE	Life	time Reduction of Transformers and Induction
	POWER COMPENSATION 213		Machines
5.3	APPLICATION OF CAPACITORS TO		227
	HARMONIC FILTERING 214		22,
	5.2.1 Application Example 5.2. Design of a	6.1	
	5.3.1 Application Example 5.2: Design of a	6.1	RATIONALE FOR RELYING ON THE
5.4	Tuned Harmonic Filter 214		RATIONALE FOR RELYING ON THE WORST-CASE CONDITIONS 228
5.4	Tuned Harmonic Filter 214 POWER QUALITY	6.1 6.2	RATIONALE FOR RELYING ON THE WORST-CASE CONDITIONS 228 ELEVATED TEMPERATURE
5.4	Tuned Harmonic Filter 214 POWER QUALITY PROBLEMS ASSOCIATED WITH		RATIONALE FOR RELYING ON THE WORST-CASE CONDITIONS 228 ELEVATED TEMPERATURE RISE DUE TO VOLTAGE
5.4	Tuned Harmonic Filter 214 POWER QUALITY PROBLEMS ASSOCIATED WITH CAPACITORS 214	6.2	RATIONALE FOR RELYING ON THE WORST-CASE CONDITIONS 228 ELEVATED TEMPERATURE RISE DUE TO VOLTAGE HARMONICS 228
5.4	Tuned Harmonic Filter 214  POWER QUALITY  PROBLEMS ASSOCIATED WITH  CAPACITORS 214  5.4.1 Transients Associated with Capacitor		RATIONALE FOR RELYING ON THE WORST-CASE CONDITIONS 228 ELEVATED TEMPERATURE RISE DUE TO VOLTAGE HARMONICS 228 WEIGHTED-HARMONIC
5.4	Tuned Harmonic Filter 214  POWER QUALITY  PROBLEMS ASSOCIATED WITH  CAPACITORS 214  5.4.1 Transients Associated with Capacitor  Switching 214	6.2	RATIONALE FOR RELYING ON THE WORST-CASE CONDITIONS 228 ELEVATED TEMPERATURE RISE DUE TO VOLTAGE HARMONICS 228 WEIGHTED-HARMONIC FACTORS 228
5.4	Tuned Harmonic Filter 214  POWER QUALITY  PROBLEMS ASSOCIATED WITH  CAPACITORS 214  5.4.1 Transients Associated with Capacitor Switching 214  5.4.2 Harmonic Resonances 215	6.2	RATIONALE FOR RELYING ON THE WORST-CASE CONDITIONS 228 ELEVATED TEMPERATURE RISE DUE TO VOLTAGE HARMONICS 228 WEIGHTED-HARMONIC FACTORS 228 6.3.1 Weighted-Harmonic Factor for
5.4	Tuned Harmonic Filter 214  POWER QUALITY  PROBLEMS ASSOCIATED WITH  CAPACITORS 214  5.4.1 Transients Associated with Capacitor Switching 214  5.4.2 Harmonic Resonances 215  5.4.3 Application Example 5.3: Harmonic	6.2	RATIONALE FOR RELYING ON THE WORST-CASE CONDITIONS 228 ELEVATED TEMPERATURE RISE DUE TO VOLTAGE HARMONICS 228 WEIGHTED-HARMONIC FACTORS 228 6.3.1 Weighted-Harmonic Factor for Single-Phase Transformers 229
5.4	Tuned Harmonic Filter 214  POWER QUALITY  PROBLEMS ASSOCIATED WITH  CAPACITORS 214  5.4.1 Transients Associated with Capacitor Switching 214  5.4.2 Harmonic Resonances 215  5.4.3 Application Example 5.3: Harmonic Resonance in a Distorted Industrial	6.2	RATIONALE FOR RELYING ON THE WORST-CASE CONDITIONS 228 ELEVATED TEMPERATURE RISE DUE TO VOLTAGE HARMONICS 228 WEIGHTED-HARMONIC FACTORS 228 6.3.1 Weighted-Harmonic Factor for Single-Phase Transformers 229 6.3.2 Measured Temperature Increases of
5.4	Tuned Harmonic Filter 214  POWER QUALITY  PROBLEMS ASSOCIATED WITH  CAPACITORS 214  5.4.1 Transients Associated with Capacitor Switching 214  5.4.2 Harmonic Resonances 215  5.4.3 Application Example 5.3: Harmonic Resonance in a Distorted Industrial Power System with Nonlinear	6.2	RATIONALE FOR RELYING ON THE WORST-CASE CONDITIONS 228 ELEVATED TEMPERATURE RISE DUE TO VOLTAGE HARMONICS 228 WEIGHTED-HARMONIC FACTORS 228 6.3.1 Weighted-Harmonic Factor for Single-Phase Transformers 229 6.3.2 Measured Temperature Increases of Transformers 230
5.4	Tuned Harmonic Filter 214  POWER QUALITY  PROBLEMS ASSOCIATED WITH  CAPACITORS 214  5.4.1 Transients Associated with Capacitor Switching 214  5.4.2 Harmonic Resonances 215  5.4.3 Application Example 5.3: Harmonic Resonance in a Distorted Industrial Power System with Nonlinear Loads 216	6.2	RATIONALE FOR RELYING ON THE WORST-CASE CONDITIONS 228 ELEVATED TEMPERATURE RISE DUE TO VOLTAGE HARMONICS 228 WEIGHTED-HARMONIC FACTORS 228 6.3.1 Weighted-Harmonic Factor for Single-Phase Transformers 229 6.3.2 Measured Temperature Increases of Transformers 230 6.3.2.1 Single-Phase
5.4	Tuned Harmonic Filter 214  POWER QUALITY  PROBLEMS ASSOCIATED WITH  CAPACITORS 214  5.4.1 Transients Associated with Capacitor Switching 214  5.4.2 Harmonic Resonances 215  5.4.3 Application Example 5.3: Harmonic Resonance in a Distorted Industrial Power System with Nonlinear Loads 216  5.4.4 Application Example 5.4:	6.2	RATIONALE FOR RELYING ON THE WORST-CASE CONDITIONS 228 ELEVATED TEMPERATURE RISE DUE TO VOLTAGE HARMONICS 228 WEIGHTED-HARMONIC FACTORS 228 6.3.1 Weighted-Harmonic Factor for Single-Phase Transformers 229 6.3.2 Measured Temperature Increases of Transformers 230 6.3.2.1 Single-Phase Transformers 230
5,4	Tuned Harmonic Filter 214  POWER QUALITY  PROBLEMS ASSOCIATED WITH  CAPACITORS 214  5.4.1 Transients Associated with Capacitor Switching 214  5.4.2 Harmonic Resonances 215  5.4.3 Application Example 5.3: Harmonic Resonance in a Distorted Industrial Power System with Nonlinear Loads 216	6.2	RATIONALE FOR RELYING ON THE WORST-CASE CONDITIONS 228 ELEVATED TEMPERATURE RISE DUE TO VOLTAGE HARMONICS 228 WEIGHTED-HARMONIC FACTORS 228 6.3.1 Weighted-Harmonic Factor for Single-Phase Transformers 229 6.3.2 Measured Temperature Increases of Transformers 230 6.3.2.1 Single-Phase Transformers 230
5.4	Tuned Harmonic Filter 214  POWER QUALITY  PROBLEMS ASSOCIATED WITH  CAPACITORS 214  5.4.1 Transients Associated with Capacitor Switching 214  5.4.2 Harmonic Resonances 215  5.4.3 Application Example 5.3: Harmonic Resonance in a Distorted Industrial Power System with Nonlinear Loads 216  5.4.4 Application Example 5.4: Parallel Resonance Caused by	6.2	RATIONALE FOR RELYING ON THE WORST-CASE CONDITIONS 228 ELEVATED TEMPERATURE RISE DUE TO VOLTAGE HARMONICS 228 WEIGHTED-HARMONIC FACTORS 228 6.3.1 Weighted-Harmonic Factor for Single-Phase Transformers 229 6.3.2 Measured Temperature Increases of Transformers 230 6.3.2.1 Single-Phase Transformers 230 6.3.2.2 Three-Phase Transformers 231
5.4	Tuned Harmonic Filter 214  POWER QUALITY  PROBLEMS ASSOCIATED WITH  CAPACITORS 214  5.4.1 Transients Associated with Capacitor Switching 214  5.4.2 Harmonic Resonances 215  5.4.3 Application Example 5.3: Harmonic Resonance in a Distorted Industrial Power System with Nonlinear Loads 216  5.4.4 Application Example 5.4: Parallel Resonance Caused by Capacitors 217	6.2	RATIONALE FOR RELYING ON THE WORST-CASE CONDITIONS 228 ELEVATED TEMPERATURE RISE DUE TO VOLTAGE HARMONICS 228 WEIGHTED-HARMONIC FACTORS 228 6.3.1 Weighted-Harmonic Factor for Single-Phase Transformers 229 6.3.2 Measured Temperature Increases of Transformers 230 6.3.2.1 Single-Phase Transformers 230 6.3.2.2 Three-Phase Transformers 231
5.4	Tuned Harmonic Filter 214  POWER QUALITY  PROBLEMS ASSOCIATED WITH  CAPACITORS 214  5.4.1 Transients Associated with Capacitor Switching 214  5.4.2 Harmonic Resonances 215  5.4.3 Application Example 5.3: Harmonic Resonance in a Distorted Industrial Power System with Nonlinear Loads 216  5.4.4 Application Example 5.4: Parallel Resonance Caused by Capacitors 217  5.4.5 Application Example 5.5: Series Resonance Caused by Capacitors 217	6.2	RATIONALE FOR RELYING ON THE WORST-CASE CONDITIONS 228 ELEVATED TEMPERATURE RISE DUE TO VOLTAGE HARMONICS 228 WEIGHTED-HARMONIC FACTORS 228 6.3.1 Weighted-Harmonic Factor for Single-Phase Transformers 229 6.3.2 Measured Temperature Increases of Transformers 230 6.3.2.1 Single-Phase Transformers 230 6.3.2.2 Three-Phase Transformers 231 6.3.3 Weighted-Harmonic Factor for
5.4	Tuned Harmonic Filter 214  POWER QUALITY  PROBLEMS ASSOCIATED WITH  CAPACITORS 214  5.4.1 Transients Associated with Capacitor Switching 214  5.4.2 Harmonic Resonances 215  5.4.3 Application Example 5.3: Harmonic Resonance in a Distorted Industrial Power System with Nonlinear Loads 216  5.4.4 Application Example 5.4: Parallel Resonance Caused by Capacitors 217  5.4.5 Application Example 5.5: Series Resonance Caused by Capacitors 217	6.2	RATIONALE FOR RELYING ON THE WORST-CASE CONDITIONS 228 ELEVATED TEMPERATURE RISE DUE TO VOLTAGE HARMONICS 228 WEIGHTED-HARMONIC FACTORS 228 6.3.1 Weighted-Harmonic Factor for Single-Phase Transformers 229 6.3.2 Measured Temperature Increases of Transformers 230 6.3.2.1 Single-Phase Transformers 230 6.3.2.2 Three-Phase Transformers 231 6.3.3 Weighted-Harmonic Factor for Three-Phase Induction
5.4	Tuned Harmonic Filter 214  POWER QUALITY  PROBLEMS ASSOCIATED WITH  CAPACITORS 214  5.4.1 Transients Associated with Capacitor Switching 214  5.4.2 Harmonic Resonances 215  5.4.3 Application Example 5.3: Harmonic Resonance in a Distorted Industrial Power System with Nonlinear Loads 216  5.4.4 Application Example 5.4: Parallel Resonance Caused by Capacitors 217  5.4.5 Application Example 5.5: Series Resonance Caused by Capacitors 217	6.2	RATIONALE FOR RELYING ON THE WORST-CASE CONDITIONS 228 ELEVATED TEMPERATURE RISE DUE TO VOLTAGE HARMONICS 228 WEIGHTED-HARMONIC FACTORS 228 6.3.1 Weighted-Harmonic Factor for Single-Phase Transformers 229 6.3.2 Measured Temperature Increases of Transformers 230 6.3.2.1 Single-Phase Transformers 230 6.3.2.2 Three-Phase Transformers 231 6.3.3 Weighted-Harmonic Factor for Three-Phase Induction Machines 231

	6.3.4.1 Single-Phase Induction	6.12 THE COST OF HARMONICS 244
	Motors 234	6.13 TEMPERATURE AS A FUNCTION OF
	6.3.4.2 Three-Phase Induction	TIME 244
	Motors 235	6.13.1 Application Example 6.7:
6.1	EXPONENTS OF WEIGHTED-	Temperature Increase of Rotating
0.4	HARMONIC FACTORS 236	Machine with a Step Load 245
<i></i>	ADDITIONAL LOSSES OR	6.14 VARIOUS OPERATING MODES OF
6.5	TEMPERATURE RISES VERSUS	ROTATING MACHINES 245
		6.14.1 Steady-State Operation 246
	WEIGHTED-HARMONIC	O.X. O. D. C.
	FACTORS 238	•
	6.5.1 Application Example 6.1:	*
	Temperature Rise of a Single-Phase	Operation 247 6.14.4 Intermittent Operation 247
	Transformer Due to Single Harmonic	0.2 III
	Voltage 239	6.14.5 Steady State with Intermittent
	6.5.2 Application Example 6.2:	Operation 247
	Temperature Rise of a Single-Phase	6.14.6 Application Example 6.8: Steady Stat
	Induction Motor Due to Single	with Superimposed Periodic
	Harmonic Voltage 239	Intermittent Operation with Irregular
6.6	ARRHENIUS PLOTS 240	Load Steps 248
6.7	REACTION RATE EQUATION 240	6.14.7 Reduction of Vibrations and
6.8	DECREASE OF LIFETIME DUE TO AN	Torque Pulsations in Electric
	ADDITIONAL TEMPERATURE	Machines 249
	RISE 241	6.14.8 Application Example 6.9: Reduction
	6.8.1 Application Example 6.3: Aging of a	of Harmonic Torques of a Piston-
	Single-Phase Induction Motor with	Compressor Drive with Synchronous
	E = 0.74 eV Due to a Single Harmonic	Motor as Prime Mover 249
	Voltage 241	6.14.9 Calculation of Steady-State
	6.8.2 Application Example 6.4: Aging of a	Temperature Rise ΔT of Electric
	Single-Phase Induction Motor with	Apparatus Based on Thermal
	E = 0.51 eV Due to a Single Harmonic	Networks 250
	Voltage 241	6.14.10 Application Example 6.10:
6.9	REDUCTION OF LIFETIME OF	Temperature-Rise Equations for a
0.7	COMPONENTS WITH ACTIVATION	Totally Enclosed Fan-Cooled 100 hp
	ENERGY E = 1.1 EV DUE TO	Motor 252
	HARMONICS OF THE TERMINAL	6.14.11 Application Example 6.11:
	VOLTAGE WITHIN RESIDENTIAL OR	Temperature-Rise Equations for a
	COMMERCIAL UTILITY	Drip-Proof 5 hp Motor 252
	SYSTEMS 242	6.15 SUMMARY 252
6.16	O POSSIBLE LIMITS FOR HARMONIC	6.16 PROBLEMS 253
0.10		6.17 REFERENCES 258
		0.17 KEI EREKCEG 250
	6.10.1 Application Example 6.5: Estimation of Lifetime Reduction for Given	
	Single-Phase and Three-Phase	CHAPTER 7
	Voltage Spectra with High Harmonic	Power System Modeling under Nonsinusoidal
	Penetration with Activation Energy	Operating Conditions
	E = 1.1  eV 243	261
	6.10.2 Application Example 6.6: Estimation	7.1 OVERVIEW OF A MOSERN BOWER
	of Lifetime Reduction for Given	7.1 OVERVIEW OF A MODERN POWER
	Single-Phase and Three-Phase	SYSTEM 261
	Voltage Spectra with Moderate	7.2 POWER SYSTEM MATRICES 263

7.2.1

Harmonic Penetration with Activation

244

Energy E = 1.1 eV

NATURE OF HARMONICS

6.11 PROBABILISTIC AND TIME-VARYING

Bus Admittance Matrix

7.2.1.1 Application Example 7.1: A

Configuration

Simple Power System

263

263

Contents XV

		7.2.1.2	Application Example 7.2: Construction of Bus Admittance Matrix 265		7.4.4	Formulation of the Newton– Raphson Approach for Harmonic Power Flow 281
		7.2.1.3	Application Example 7.3: Building of Nonsingular Bus		7.4.5	Harmonic Jacobian Entry Formulas Related to Line Currents 284
		7.2.1.4	Admittance Matrix 266 Application Example 7.4:		7.4.6	Newton-Based Harmonic Power Flow Algorithm 285
			Building of Singular Bus		7.4.7	Application Example 7.14:
			Admittance Matrix 266			Computation of Harmonic
	7.2.2	Triangu	ılar Factorization 267			Admittance Matrix 286
		7.2.2.1	Application		7.4.8	Application Example 7.15:
			Example 7.5: Matrix			Computation of Nonlinear Load
			Multiplication 267			Harmonic Currents 286
		7.2.2.2	Application		7.4.9	Application Example 7.16:
			Example 7.6: Triangular			Evaluation of Harmonic Mismatch
			Factorization 267			Vector 286
	7.2.3	Jacobia	n Matrix 269		7.4.10	Application Example 7.17: Evaluation
		7.2.3.1	Application Example 7.7:			of Fundamental and Harmonic
			Jacobian Matrices 269			Jacobian Submatrices 287
7.3	FUND	AMEN.	TAL POWER FLOW 270		7.4.11	Application Example 7.18:
	7.3.1	Fundar	nental Bus Admittance			Computation of the Correction Bus
		Matrix	271			Vector and Convergence of Harmonia
	7.3.2	Newton	n–Raphson Power Flow			Power Flow 287
		Formul	ation 271	7.5	CLAS	SIFICATION OF HARMONIC
	7.3.3	Fundar	nental Jacobian Entry		POWE	ER FLOW TECHNIQUES 287
		Formul	as 274		7.5.1	Decoupled Harmonic Power
	7.3.4	Newton	n–Raphson Power Flow			Flow 287
		Algorit	hm 276		7.5.2	Fast Harmonic Power Flow 289
	7.3.5	Applica	ation Example 7.8:		7.5.3	Modified Fast Decoupled Harmonic
		Compu	tation of Fundamental			Power Flow 290
		Admitt	ance Matrix 276		7.5.4	Fuzzy Harmonic Power Flow 290
	7.3.6	Applica	ation Example 7.9:		7.5.5	Probabilistic Harmonic Power
		Evalua	tion of Fundamental Mismatch			Flow 290
		Vector	277		7.5.6	Modular Harmonic Power
	7.3.7	Applica	ation Example 7.10:			Flow 292
		Evalua	tion of Fundamental Jacobian		7.5.7	Application Example 7.19:
		Matrix	277			Accuracy of Decoupled Harmonic
	7.3.8	Applica	ation Example 7.11:			Power Flow 293
		Calcula	tion of the Inverse of Jacobian	7.6	SUMN	MARY 293
		Matrix	277	7.7	PROB	BLEMS 294
	7.3.9	Applica	ation Example 7.12: Inversion	7.8	REFE	RENCES 299
		of a 3 >	3 Matrix 277			
	7.3.10	Applica	ation Example 7.13:			
			tation of the Correction			O
			e Vector 277			CHAPTER 8
7.4	NEW1 FLOW	ON-BA	SED HARMONIC POWER	I	mpact (	of Poor Power Quality on Reliability, Relaying, and Security
	7.4.1	Harmo	nic Bus Admittance Matrix			301
			wer Definitions 278	8.1	RELL	ABILITY INDICES 301
	7.4.2		ng of Nonlinear and		8.1.1	Application Example 8.1: Calculation
			Loads at Harmonic			of Reliability Indices 302
		Freque		8.2	DEGI	RADATION OF RELIABILITY AND
	7.4.3	The Ha	armonic Power Flow Algorithm			RITY DUE TO POOR POWER

(Assembly of Equations)

279

303

QUALITY

xvi Contents

8.2.1	Single-5	Γime and Nonperiodic Events				Coal-Fired Plant and the Other One with a 5 MW
022		aion and Tatanhouse since				
8.2.2		nics and Interharmonics			0252	Wind-Power Plant 314
		ng Overcurrent and			8.2.5.2	Application Example 8.6:
		Frequency Relay				Frequency Control of an
0.0.0	Operati					Interconnected Power System
8.2.3		Line Communication 305				Broken into Two Areas: The
8.2.4		magnetic Field (EMF)				First One with a 5 MW
		tion and Corona Effects in				Wind-Power Plant and the
		dission Lines 305				Other One with a 5 MW
		Generation of EMFs 305	0.0	TOOL	C EOD I	Photovoltaic Plant 315
	8.2.4.2	Application Example 8.2:	8.3			DETECTING POOR POWER
		Lateral Profile of Electric		QUAI		316
		Field at Ground Level below		8.3.1	Sensors	
		a Three-Phase Transmission		8.3.2		ation Example 8.7: Detection
		Line 305				nonic Power Flow Direction
	8.2.4.3	Application Example 8.3:				t of Common Coupling
		Lateral Profile of Magnetic			(PCC)	317
		Field at Ground Level under		8.3.3		um Error Analysis 318
		a Three-Phase Transmission			8.3.3.1	Review of Existing
		Line 306				Methods 318
	8.2.4.4	Mechanism of				Approach 319
		Corona 306			8.3.3.3	Accuracy Requirements for
	8.2.4.5	Factors Reducing the Effects				Instruments 323
		of EMFs 307			8.3.3.4	11 1
	8.2.4.6	Factors Influencing				Conventional Approach
		Generation of				$P_{Loss} = P_{in} - P_{out} \qquad 323$
		Corona 308		8.3.4	Applie	ation Example 8.9: New
	8.2.4.7	Application Example 8.4:			Approa	ach $p_{cu} = i'_2(v_1 - v'_2)$ and
		Onset of Corona in a			$p_{fe} = v_1$	$(i_1 - i_2')$ 323
		Transmission Line 308		8.3.5	Applica	ation Example 8.10: Back-to-
	8.2.4.8	Negative Effects of EMFs			Back A	approach of Two Transformers
		and Corona 308			Simula	ted with CTs and PTs 324
	8.2.4.9	Solutions for the		8.3.6	Applie	ation Example 8.11: Three-
		Minimization of EMFs,			Phase '	Γransformer with DC Bias
		Corona, and Other			Curren	t 324
		Environmental Concerns in		8.3.7	Discuss	sion of Results and
		Newly Designed			Conclu	
		Transmission Lines 310		8.3.8	Uncert	ainty Analysis 326
	8.2.4.10	Economic		8.3.9		A and National Instrument
		Considerations 312				EW Software 326
	8.2.4.11	No-Cost/Low-Cost EMF	8.4	TOOI		IMPROVING RELIABILITY
		Mitigation Hearings of PUC			SECUR	
		of California 312		8.4.1		terrupting Switches and Fault-
	8.2.4.12	2 Summary and		-7.1.2		t Limiters 327
	0,2,,,,,	Conclusions 313		8.4.2		ation Example 8.12: Insertion
8.2.5	Distrib	uted-, Cogeneration, and		, , , , ,		ault Current Limiter (FCL) in
٠,٠		ncy/Voltage Control 314				wer System 328
	8.2.5.1			8.4.3		onal Islanding, Interconnected,
	0,2,5.1	Frequency Control of an		G. F.D		dant, and Self-Healing Power
		Interconnected Power System			System	
		Broken into Two Areas: The		8.4.4	-	ion of Problem 330
		TALLUNCH LINUX A WU CALLUIG. THE				

Solution Approach

331

8.4.5

First One with a 300 MW

Contents

	8.4.6	Voltage Regulation, Ride-Through			9.3.2.4 Second-Order Damped
		Capabilities of Load Components:			Band-Pass Filter 369
		CBEMA, ITIC Tolerance Curves, and			9.3.2.5 Composite Filter 370
		SEMI F47 Standard 334		9.3.3	Classification of Passive Power
	8.4.7	Application Example 8.13: Ride-			Filters 370
		Through Capability of Computers and		9.3.4	Potentials and Limitations of Passive
		Semiconductor Manufacturing			Power Filters 371
		Equipment 335		9.3.5	Application Example 9.1: Hybrid
	8.4.8	Backup, Emergency, or Standby			Passive Filter Design to Improve the
		Power Systems (Diesel-Generator Set,			Power Quality of the IEEE 30-Bus
		Batteries, Flywheels, Fuel Cells,			Distribution System Serving
		Supercapacitors) 335			Adjustable-Speed Drives 373
	8.4.9	Automatic Disconnect of Distributed	9.4	ACTIV	VE FILTERS 375
		Generators in Case of Failure of		9.4.1	Classification of Active Power Filters
		Central Power Station(s) 336			Based on Topology and Supply
8.5		SHEDDING AND LOAD			System 375
		GEMENT 336		9.4.2	Classification of Active Power Filters
8.6		GY-STORAGE METHODS 336			Based on Power Rating 375
8.7		HING THE OPERATION OF	9.5		AID POWER FILTERS 378
		MITTENT RENEWABLE		9.5.1	Classification of Hybrid
		R PLANTS WITH ENERGY			Filters 378
	STORA		9.6		K DIAGRAM OF ACTIVE
	8.7.1	Application Example 8.14: Design of		FILTE	
		a Hydro Pumped-Storage Facility	9.7	CONT	ROL OF FILTERS 383
		Supplied by Energy from a Wind		9.7.1	Derivation of Reference Signal using
		Farm 336			Waveform Compensation 385
	8.7.2	Application Example 8.15: Peak-			9.7.1.1 Waveform Compensation
		Power Tracker for Photovoltaic			using Time-Domain
		Power Plants 337			Filtering 385
8.8	SUMM				9.7.1.2 Waveform Compensation
8.9	PROBI				using Frequency-Domain
		RENCES 351			Filtering 387
8.11	ADDI	ΓΙΟΝΑL BIBLIOGRAPHY 358			9.7.1.3 Other Methods for
					Waveform
		CHAPTER 9			Compensation 387
	The R	oles of Filters in Power Systems		9.7.2	Derivation of Compensating Signals
		359			using Instantaneous Power
_					Compensation 388
9.1		OF NONLINEAR LOADS 359			9.7.2.1 Application Example 9.2:
9.2		SIFICATION OF FILTERS			Instantaneous Power for
		OYED IN POWER			Sinusoidal Supply Voltages
	SYSTE				and Distorted Load
9.3		VE FILTERS AS USED IN POWER			Currents 389
	SYSTE				9.7.2.2 Application Example 9.3:
	9.3.1	Filter Transfer Function 363			Instantaneous Power
	9.3.2	Common Types of Passive Filters for			Consumed by a Resistive
		Power Quality Improvement 364			Load Subjected to Distorted
		9.3.2.1 First-Order, High-Pass			Supply Voltages 389
		Filter 365			9.7.2.3 Application Example 9.4:
		9.3.2.2 First-Order Damped High-			Supply Current Distortion
		Pass Filter 366			Caused by Active Filters with
		9.3.2.3 Second-Order Band-Pass			Instantaneous Power-Based
		Filter 367			Controllers 390

Contents xviii

	9.7.3	Derivation of Compensating Signals		10.3.4.4 Artificial Neural Networks
		using Impedance Synthesis 390		407
		9.7.3.1 Impedance-Based		10.3.4.5 Fuzzy Set Theory 408
		Blocking 390	10.3.5	Graph Search Algorithm 410
		9.7.3.2 Impedance-Based	10.3.6	Particle Swarm Algorithm 410
		Compensation 390	10.3.7	Tabu Search Algorithm 411
	9.7.4	DC Bus Energy Balance 391	10.3.8	Sequential Quadratic
	9.7.5	Generation of Compensation Signal		Programming 411
		using Reference-Following	10.3.9	Application Example 10.1: Fuzzy
		Techniques 391		Capacitor Placement in an 11 kV, 34-
	9.7.6	Application Example 9.5: Hybrid of		Bus Distribution System with Lateral
		Passive and Active Power Filters for		Branches under Sinusoidal Operating
		Harmonic Mitigation of Six-Pulse and		Conditions 411
		Twelve-Pulse Rectifier Loads 392	10.3.10	Application Example 10.2: Genetically
9.8	SUMM	IARY 392		Optimized Placement of Capacitor
9.9	REFE	RENCES 395		Banks in an 11 kV, 34-Bus
				Distribution System with Lateral
				Branches under Sinusoidal Operating
		CHAPTER 10		Conditions 411
Ont	imal Dla	cement and Sizing of Shunt Capacitor		MAL PLACEMENT AND SIZING OF
Opt		s in the Presence of Harmonics		T CAPACITOR BANKS IN THE
	Danis	397		ENCE OF HARMONICS 413
			10.4.1	Reformulation of the Capacitor
10.1		TIVE POWER COMPENSATION		Allocation Problem to Account for
	398			Harmonics 414
	10.1.1			10.4.1.1 System Model at
		Compensation 398		Fundamental and Harmonic
	10.1.2	Drawbacks of Reactive Power		Frequencies 414
		Compensation 399		10.4.1.2 Constraints 414
10.2		MON TYPES OF DISTRIBUTION		10.4.1.3 Objective Function (Cost
		T CAPACITOR BANKS 400	10.40	Index) 414
	10.2.1	Open-Rack Shunt Capacitor	10.4.2	Application of Maximum Sensitivities
	4000	Bank 400		Selection (MSS) for the Capacitor Allocation Problem 415
	10.2.2	Pole-Mounted Capacitor		
	1000	Bank 401		10.4.2.1 Sensitivity Functions for MSS 415
		Modular Capacitor Bank 401		10.4.2.2 The MSS Algorithm 415
	10.2.4	Enclosed Fixed Capacitor		10.4.2.2 The MSS Algorithm 413
	1005	Bank 402		Algorithm 417
	10.2.5	Enclosed Switched Capacitor	10.4.2	
10	OT 40	Bank 402	10.4.3	for the Capacitor Allocation
10		SIFICATION OF CAPACITOR		Problem 417
		CATION TECHNIQUES FOR	10.4.4	
		SOIDAL OPERATING DITION 402	10.4.4	Capacitor Allocation Problem 413
			10.4.5	* '
	10.3.1	•	10.4.3	Placement and Sizing of Capacitor
	10.3.2	Numerical Programming Methods		Banks in the Distorted 18-Bus IEEE
	1022	403 Heuristic Methods 403		Distribution System by MSS and
	10.3.3			MSS-LV Methods 417
	10.3.4	Artificial Intelligence–Based (AI-Based) Methods 404	10.4.6	
		10.3.4.1 Genetic Algorithms 404	10.4.0	Placement and Sizing of Capacitor
		10.3.4.1 Genetic Algorithms 404 10.3.4.2 Expert Systems 407		Banks in the Presence of
		10.3.4.2 Expert Systems 407 10.3.4.3 Simulated Annealing 407		Harmonics 419
		10.5.T.5 Simulated Allineaning 40/		

10.4.6.1 Sensitivity of Objective	11.1.2 Flexible AC Transmission Systems
Function and THD _v 421	(FACTS) 444
10.4.6.2 Fuzzy Implementation 421	11.1.3 Custom Power Devices 445
10.4.6.3 Solution Methodology 423	11.1.4 Active Power Line Conditioner
10.4.7 Application Example 10.4:	(APLC) 446
Optimal Placement and	11.1.5 Remark Regarding Compensation
Sizing of Capacitor Banks in the	Devices 446
Distorted 18-Bus IEEE	11.2 UNIFIED POWER QUALITY
Distribution System by Fuzzy Expert	CONDITIONER (UPQC) 447
System 424	11.2.1 UPQC Structure 447
10.4.8 Optimal Placement,	11.2.2 Operation of UPQC 448
Replacement, and Sizing of	11.2.2.1 Operation of the UPQC with
Capacitor Banks in Distorted	Unbalanced and Distorted
Distribution Networks by Genetic	System Voltage and Load
Algorithms 425	Current 448
10.4.8.1 Genetic Algorithm 425	11.2.2.2 Operation of UPQC with
10.4.8.2 Solution	Unbalanced System Voltages
Methodology 426	and Load Currents 449
10.4.9 Application Example 10.5: Optimal	11.3 THE UPQC CONTROL SYSTEM 450
Placement and Sizing of Capacitor	11.3.1 Pattern of Reference Signals 451
Banks in the 6-Bus IEEE Distorted	11.4 UPQC CONTROL USING THE PARK
System 428	(DQ0) TRANSFORMATION 451
10.4.10 Application Example 10.6: Optimal	11.4.1 General Theory of the Park (dq0)
Placement and Sizing of Capacitor	Transformation 451
Banks in the 18-Bus IEEE Distorted	11.4.2 Control of Series Converter Based on
System 429	the dq0 Transformation 452
10.4.11 Genetically Optimized Fuzzy	11.4.3 Control of Shunt Converter Relying
Placement and Sizing of Capacitor	on the dq0 Transformation 452
Banks in Distorted Distribution	11.4.4 Control of DC Link Voltage using the
Networks 430	dq0 Transformation 453
10.4.11.1 Solution Method 430	11.5 UPQC CONTROL BASED ON THE
10.4.12 Application Example 10.7: Genetically	INSTANTANEOUS REAL AND
Optimized Fuzzy Placement	IMAGINARY POWER THEORY 453
and Sizing of Capacitor Banks in	11.5.1 Theory of Instantaneous Real and
the 18-Bus IEEE Distorted	Imaginary Power 453
System 432	11.5.1.1 Application Example 11.1:
10.4.13 Application Example 10.8: Genetically	The αβ0 Transformation for
Optimized Fuzzy Placement and	Three-Phase Sinusoidal
Sizing of Capacitor Banks in the 123-	System Supplying a Linear
Bus IEEE System with 20 Nonlinear	Load 454
Loads 433	11.5.1.2 Application Example 11.2:
10.5 SUMMARY 435	The αβ0 Transformation for
10.6 REFERENCES 439	Three-Phase Sinusoidal
	System Supplying a
11	Nonlinear Load 455
CHAPTER 11	11.5.1.3 Application Example 11.3:
Unified Power Quality Conditioner (UPQC)	The $\alpha\beta0$ Transformation for
443	Unbalanced Three-Phase,
11.1 COMPENSATION DEVICES AT	Four-Wire System Supplying
FUNDAMENTAL AND HARMONIC	a Linear Load 455
FREQUENCIES 444	11.5.2 UPQC Control System Based on
11.1.1 Conventional Compensation	Instantaneous Real and Imaginary
Devices 444	Powers 456

11.5.2.1 Phase-Lock Loop (PLL)	11.6.6 Application Example 11.9: UPQC
Circuit 456	Compensation of Flicker 464
11.5.2.2 Positive-Sequence Voltage	11.7 SUMMARY 466
Detector (PSVD) 457	11.8 REFERENCES 468
11.5.2.3 Control of Shunt Converter	
using Instantaneous Power	
Theory 457	
11.5.2.4 Control of DC Voltage	APPENDIX 1: SAMPLING
using Instantaneous Power	TECHNIQUES 469
Theory 458	APPENDIX 2: PROGRAM LIST FOR
11.5.2.5 Control of Series Converter	FOURIER ANALYSIS 473
using Instantaneous Power	APPENDIX 3: PROGRAM LIST FOR
Theory 459	PROPAGATION OF A SURGE
11.6 PERFORMANCE OF THE UPQC 460	THROUGH A DISTRIBUTION
11.6.1 Application Example 11.4: Dynamic	FEEDER WITH AN INSULATOR
Behavior of UPQC for Current	FLASHOVER 479
Compensation 462	APPENDIX 4: PROGRAM LIST FOR
11.6.2 Application Example 11.5:	LIGHTNING ARRESTER
UPQC Compensation of Voltage	OPERATION 481
Harmonics 462	APPENDIX 5: EQUIPMENT FOR
11.6.3 Application Example 11.6:	TESTS 483
UPQC Compensation of Voltage	APPENDIX 6: MEASUREMENT ERROR OF
Imbalance 462	POWERS 485
11.6.4 Application Example 11.7: Dynamic	APPENDIX 7: APPLICATION EXAMPLES,
Performance of UPQC for Sudden	DIVIDED BY CHAPTER 487
Voltage Variation 462	
11.6.5 Application Example 11.8: Damping	
of Harmonic Oscillations Using a	
UPQC 462	Index 631