

Theory and Practice

Nasser Tleis

Contents

Li	st of I	Electric	al Symbols	xvii
Fo	rewo	rd		xix
Pr	eface			xxi
Bi	Biography			xxiv
1	Intr	oductio	on to power system faults	1
	1.1	Gener		1
	1.2	Struct	ture of power systems	1
	1.3	Need	for power system fault analysis	2
		1.3.1	General	2 3 3
			Health and safety considerations	3
		1.3.3	Design, operation and protection of power systems	
		1.3.4	Design of power system equipment	4
	1.4		ecteristics of power system faults	4
			Nature of faults	4
			Types of faults	4
			Causes of faults	5
			Characterisation of faults	6
	1.5 Terminology of short-circuit current waveform and curre		inology of short-circuit current waveform and current	
			uption	8
	1.6		ts of short-circuit currents on equipment	12
		1.6.1	Thermal effects	12
			Mechanical effects	12
	1.7	Per-u	nit analysis of power systems	15
			General	15
			Single-phase systems	15
		1.7.3	Change of base quantities	18
		1.7.4	Three-phase systems	19
		1.7.5	Mutually coupled systems having different operating	
			voltages	20
		1.7.6	Examples	25

2	The	ory of s	ymmetrical components and connection of	
			ence networks during faults	28
	2.1	Gener	_	28
	2.2	Symm	netrical components of a three-phase power system	29
		2.2.1	Balanced three-phase voltage and current phasors	29
		2.2.2	Symmetrical components of unbalanced voltage or	
			current phasors	31
		2.2.3	Apparent power in symmetrical component terms	34
		2.2.4	Definition of phase sequence component networks	34
		2.2.5	Sequence components of unbalanced three-phase	
			impedances	36
		2.2.6	Sequence components of balanced three-phase	
			impedances	39
		2.2.7	Advantages of symmetrical components frame of	
			reference	40
		2.2.8	Examples	40
	2.3	Analy	sis of balanced and unbalanced faults in the sequence	
		refere	nce frame	43
		2.3.1		43
			Balanced three-phase to earth short-circuit faults	43
		2.3.3	-	45
			Unbalanced one-phase to earth short-circuit faults	47
		2.3.5	Unbalanced phase-to-phase or two-phase short-circuit	
			faults	49
		2.3.6	•	51
			Unbalanced one-phase open-circuit faults	55
		2.3.8	•	56
		2.3.9	Example	58
	2.4		analysis and choice of reference frame	59
		2.4.1	General	59
		2.4.2		60
		2.4.3	Two-phase to earth short-circuit faults	61
	2.5	_	vsis of simultaneous faults	63
		2.5.1		63
		2.5.2		63
		2.5.3	Cross-country faults or simultaneous faults at different	<i>(5</i>
		0.5.4	locations	65
		2.5.4	Simultaneous open-circuit and short-circuit faults at	66
		255	the same location	66
		2.5.5	Simultaneous faults caused by broken and fallen to	68
		256	earth conductors	08
		2.5.6	Simultaneous short-circuit and open-circuit faults on distribution transformers	69
	E	·han ====		73
	ruri	ther read	ung	7.2

	Contents	íν

3	Mod	lelling	of multi-conductor overhead lines and cables	74		
	3.1	Gener	ral	74		
	3.2	Phase	and sequence modelling of three-phase			
		overh	ead lines	74		
		3.2.1	Background	74		
		3.2.2	Overview of the calculation of overhead line			
			parameters	76		
		3.2.3	Untransposed single-circuit three-phase lines with and			
			without earth wires	89		
		3.2.4	Transposition of single-circuit three-phase lines	96		
		3.2.5	Untransposed double-circuit lines with earth wires	102		
		3.2.6		108		
		3.2.7		123		
		3.2.8	Examples	127		
	3.3	Phase	and sequence modelling of three-phase cables	140		
		3.3.1	Background	140		
		3.3.2	Cable sheath bonding and earthing arrangements	142		
		3.3.3	Overview of the calculation of cable parameters	145		
		3.3.4	Series phase and sequence impedance matrices of			
			single-circuit cables	154		
		3.3.5	Shunt phase and sequence susceptance matrices of			
			single-circuit cables	164		
		3.3.6	Three-phase double-circuit cables	168		
		3.3.7	Examples	170		
	3.4	Seque	ence π models of single-circuit and double-circuit			
		overh	ead lines and cables	173		
		3.4.1	Background	173		
		3.4.2	Sequence π models of single-circuit overhead			
			lines and cables	175		
		3.4.3	Sequence π models of double-circuit overhead			
			lines	177		
		3.4.4	Sequence π models of double-circuit cables	180		
	3.5		ence π models of three-circuit overhead lines	180		
	3.6	Three-phase modelling of overhead lines and cables				
		(phase	e frame of reference)	182		
		3.6.1	Background	182		
		3.6.2	C	183		
		3.6.3	Double-circuit overhead lines and cables	184		
	3.7	Comp	outer calculations and measurements of overhead line and			
		cable	parameters	186		
		3.7.1	Computer calculations of overhead line and cable			
			parameters	186		
		3.7.2	Measurement of overhead line parameters	187		
		3.7.3	Measurement of cable parameters	193		

x Contents

	3.8	Praction	cal aspects of phase and sequence parameters of	
		overhe	ead lines and cables	197
		3.8.1	Overhead lines	197
		3.8.2	Cables	197
	Furth	er read	ing	198
4	Mod	elling o	of transformers, static power plant and static load	200
	4.1	Genera	al	200
	4.2	Seque	nce modelling of transformers	200
		4.2.1	Background	200
		4.2.2	Single-phase two-winding transformers	202
		4.2.3	Three-phase two-winding transformers	213
		4.2.4	Three-phase three-winding transformers	224
		4.2.5	Three-phase autotransformers with and without	
			tertiary windings	230
		4.2.6	1 0 0	242
		4.2.7	Single-phase traction transformers connected to	
			three-phase systems	243
		4.2.8	Variation of transformer's PPS leakage impedance with	
			tap position	245
		4.2.9	Practical aspects of ZPS impedances of transformers	246
		4.2.10	Measurement of sequence impedances of three-phase	
			transformers	249
		4.2.11	Examples	254
	4.3	Seque	nce modelling of QBs and PS transformers	261
		4.3.1	Background	261
		4.3.2	PPS, NPS and ZPS modelling of QBs and PSs	263
			Measurement of QB and PS sequence impedances	268
	4.4	Seque	nce modelling of series and shunt reactors and	
		capaci	tors	272
		4.4.1	Background	272
		4.4.2	Modelling of series reactors	273
		4.4.3	Modelling of shunt reactors and capacitors	275
		4.4.4	Modelling of series capacitors	278
	4.5	Seque	nce modelling of static variable compensators	283
		4.5.1	Background	283
		4.5.2	PPS, NPS and ZPS modelling	284
	4.6	Seque	nce modelling of static power system load	285
		4.6.1	Background	285
		4.6.2	PPS, NPS and ZPS modelling	286
	4.7	Three-	-phase modelling of static power plant and load in the	
		phase	frame of reference	286
		4.7.1	Background	286
		4.7.2	Three-phase modelling of reactors and capacitors	286
		4.7.3		287

			Co	miterits)	ΧI
		4.7.4	Three-phase modelling of QBs and PSs	29'	7
		4.7.5	Three-phase modelling of static load	299	9
	Furth	ner read	ling	300	0
5	Mod	elling	of ac rotating machines	30:	1
	5.1	Gener		30	1
	5.2		view of synchronous machine modelling in the phase		
			of reference	302	2
	5.3		pronous machine modelling in the $dq0$ frame of		
		refere		304	4
		5.3.1	* 2		
		~ ^ ^	reference	304	
				300	
			Machine operator reactance analysis	308	8
		5.3.4	Machine parameters: subtransient and transient	21.	_
	<i>5 1</i>	Ol-	reactances and time constants	310	U
	5.4		nronous machine behaviour under short-circuit faults and		4
		5.4.1	lling in the sequence reference frame	314	
		5.4.1	· · · · · · · · · · · · · · · · · · ·	314 315	
		5.4.3	Unbalanced two-phase (phase-to-phase) short-circuit		J
		J. 4 .J	faults	324	1
		5.4.4	Unbalanced single-phase to earth short-circuit faults	328	
		5.4.5	Unbalanced two-phase to earth short-circuit faults	332	
		5.4.6	Modelling the effect of initial machine loading	337	
		5.4.7		339	
		5.4.8	Modelling of synchronous motors/compensators/		-
			condensers	342	2
		5.4.9	Examples	343	
	5.5	Deter	mination of synchronous machines parameters from		
			arements	348	8
		5.5.1	Measurement of PPS reactances, PPS resistance and		
			d-axis short-circuit time constants	348	8
			Measurement of NPS impedance	352	2
		5.5.3	Measurement of ZPS impedance	353	3
		5.5.4	Example	353	3
	5.6		lling of induction motors in the phase frame of reference	357	7
		5.6.1	General	351	7
		5.6.2	Overview of induction motor modelling in the phase		
			frame of reference	358	
	5.7		lling of induction motors in the dq frame of reference	362	
		5.7.1	Transformation to dq axes	362	
		5.7.2	Complex form of induction motor equations	360	3
		5.7.3	Operator reactance and parameters of a single-winding		_
			rotor	363	5

xii Contents

		5.7.4	Operator reactance and parameters of double-cage or	
			deep-bar rotor	364
	5.8	Induc	tion motor behaviour under short-circuit faults and	
		model	ling in the sequence reference frame	368
		5.8.1	Three-phase short-circuit faults	368
		5.8.2	Unbalanced single-phase to earth short-circuit faults	375
		5.8.3	Modelling the effect of initial motor loading	377
		5.8.4	Determination of motor's electrical parameters	
			from tests	378
		5.8.5	Examples	383
	5.9	Mode	lling of wind turbine generators in short-circuit	
		analys	sis	385
		5.9.1	Types of wind turbine generator technologies	385
		5.9.2	Modelling of fixed speed induction generators	388
		5.9.3	Modelling of small speed range wound rotor induction	
			generators	388
		5.9.4	Modelling of doubly fed induction generators	389
		5.9.5	Modelling of series converter-connected generators	393
	Furt	her reac	ling	396
6	Shor	rt-circu	it analysis techniques in ac power systems	397
	6.1	Gener	al	397
	6.2	Appli	cation of Thévenin's and superposition's theorems to the	
		simul	ation of short-circuit and open-circuit faults	398
		6.2.1	Simulation of short-circuit faults	398
		6.2.2	Simulation of open-circuit faults	400
	6.3		impedance short-circuit analysis techniques	402
		6.3.1		402
		6.3.2		402
		6.3.3	The ac short-circuit analysis techniques	403
		6.3.4	Estimation of dc short-circuit current component	
			variation with time	403
		6.3.5	Estimation of ac short-circuit current component	
			variation with time	404
	6.4	Time	domain short-circuit analysis techniques in large-scale	
		power	systems	404
	6.5	Analy	rsis of the time variation of ac and dc short-circuit current	
		comp	onents	405
		6.5.1	Single short-circuit source connected by a	
			radial network	405
		6.5.2	Parallel independent short-circuit sources connected	
			by radial networks	408
		6.5.3	Multiple short-circuit sources in interconnected	
			networks	412

	6.6	Fixed	impedance short-circuit analysis of large-scale power	
		systen		417
			Background	417
		6.6.2	1	
			faults	417
		6.6.3	•	428
		6.6.4	· 1	435
	6.7		-phase short-circuit analysis of large-scale power	
			ns in the phase frame of reference	438
			Background	438
		6.7.2	Three-phase models of synchronous and induction	
			machines	438
		6.7.3	Three-phase analysis of ac current in the phase frame	
			of reference	441
		6.7.4	Three-phase analysis and estimation of X/R ratio of	
			fault current	445
		6.7.5	Example	448
	Furth	ier read	ling	450
7	Into	matian	al standards for short-circuit analysis in	
,		ower sy	· · · · · · · · · · · · · · · · · · ·	451
	7.1	Gener		451
	7.2		ational Electro-technical Commission 60909-0	751
	1.2	Stand		451
			Background	451
		7.2.2	•	731
		1.2.2	short-circuit location	452
		7.2.3		453
		7.2.4		456
		7.2.5		458
		7.2.6	Example	462
	7.3		ngineering Recommendation ER G7/4	463
	1.5	7.3.1		463
		7.3.1		464
		7.3.2	Analysis technique	465
		7.3.4	Calculated short-circuit currents	466
		7.3.5		467
	7.4		ican IEEE C37.010 Standard	469
	/ .* **	7.4.1		469
		7.4.2	Background Representation of system and equipment	469
		7.4.2		409
		7.4.4	*	470
	75		ple calculations using IEC 60909, UK ER G7/4 and	4/1
	7.5		C27 010	173

Contents xiii

xiv Contents

	7.6	IEC 6	2271-100-2001 and IEEE C37.04-1999 circuit-breaker	
		standa	ards	479
		7.6.1	Short-circuit ratings	479
		7.6.2	Assessment of circuit-breakers short-circuit duties	
			against ratings	481
	Furt	her read	ling	483
8	Netv	vork eq	quivalents and practical short-circuit current	
			s in large-scale ac power systems	485
	8.1	Gener	ral	485
	8.2	Power	r system equivalents for large-scale system studies	485
		8.2.1	Theory of static network reduction	485
		8.2.2	Need for power system equivalents	487
		8.2.3	Mathematical derivation of power system equivalents	489
	8.3	Repre	sentation of power systems in large-scale studies	496
		8.3.1	Representation of power generating stations	496
		8.3.2	Representation of transmission, distribution and	
			industrial networks	497
	8.4	Practi	cal analysis to maximise short-circuit current predictions	498
		8.4.1	Superposition analysis and initial ac loadflow	
			operating conditions	498
		8.4.2	Effect of mutual coupling between overhead line	
			circuits	499
		8.4.3	Severity of fault types and substation configuration	503
	8.5	Uncer	tainties in short-circuit current calculations: precision	
		versus	s accuracy	504
	8.6	Proba	bilistic short-circuit analysis	507
		8.6.1	Background	507
		8.6.2	Probabilistic analysis of ac short-circuit current	
			component	507
		8.6.3	Probabilistic analysis of dc short-circuit current	
			component	509
		8.6.4	Example	515
	8.7	Risk a	assessment and safety considerations	516
		8.7.1	Background	516
		8.7.2	Relevant UK legislation	517
		8.7.3	Theory of quantified risk assessment	517
		8.7.4	Methodology of quantified risk assessment	518
	Furt	her read	ling	519
9	Con	trol an	d limitation of high short-circuit currents	520
	9.1	Gener	•	520
	9.2	Limit	ation of short-circuit currents in power system	
		opera	— · ·	520
		9.2.1		520
			Re-certification of existing plant short-circuit rating	52.1

	Con	tents	XV
--	-----	-------	----

		9.2.3	Substation splitting and use of circuit-breaker	
			autoclosing	521
		9.2.4	Network splitting and reduced system parallelism	523
		9.2.5	Sequential disconnection of healthy then faulted	
			equipment	524
		9.2.6	Increasing short-circuit fault clearance time	524
		9.2.7	De-loading circuits	525
		9.2.8	Last resort generation disconnection	525
		9.2.9	Example	525
	9.3		ion of short-circuit currents in power system design	
		and pla		527
		9.3.1	Background	527
		9.3.2	Opening of unloaded delta-connected transformer	
			tertiary windings	527
		9.3.3	Specifying higher leakage impedance for new	
			transformers	528
		9.3.4	Upgrading to higher nominal system voltage levels	528
		9.3.5	Uprating and replacement of switchgear and other	
			substation equipment	529
		9.3.6	Wholesale replacement of switchgear and other	
			substation equipment	529
		9.3.7	Use of short-circuit fault current limiters	529
		9.3.8	Examples	529
	9.4		of short-circuit fault current limiters	531
		9.4.1	Background	531
		9.4.2	Earthing resistor or reactor connected to	
		0.40	transformer neutral	531
		9.4.3	Pyrotechnic-based fault current limiters	532
		9.4.4	Permanently inserted current limiting series reactor	533
		9.4.5	Series resonant current limiters using a bypass switch	534
		9.4.6	Limiters using magnetically coupled circuits	534
		9.4.7	Saturable reactor limiters	536
		9.4.8	Passive damped resonant limiter	536
		9.4.9	Solid state limiters using power electronic switches	538
		9.4.10	Superconducting fault current limiters	539
		9.4.11	The ideal fault current limiter	543
		9.4.12	Applications of fault current limiters	543
	T7ssetle	9.4.13	Examples	546
	Furt	er readi	ng	549
10	Ani	ntroduc	tion to the analysis of short-circuit earth return	
10			of earth potential and electrical interference	550
	10.1	Backg		550
	10.1	_	ic shock and tolerance of the human body to	330
	10.4	ac cur	•	551
		10.2.1	·	551
		10.2.1	sup, town, mean and ambiened potentials	551

xvi Contents

	10.2.2 Electrical resistance of the human body	552
	10.2.3 Effects of ac current on the human body	553
10.3	Substation earth electrode system	555
	10.3.1 Functions of substation earth electrode system	555
	10.3.2 Equivalent resistance to remote earth	555
10.4	Overhead line earthing network	561
	10.4.1 Overhead line earth wire and towers earthing network	561
	10.4.2 Equivalent earthing network impedance of an infinit	
	overhead line	561
10.5	Analysis of earth fault ZPS current distribution in overhead lin	e
	earth wire, towers and in earth	563
10.6	Cable earthing system impedance	567
10.7	Overall substation earthing system and its equivalent impedance	e 567
10.8	Effect of system earthing methods on earth fault current	
	magnitude	568
10.9	Screening factors for overhead lines	569
10.10	Screening factors for cables	571
	10.10.1 General	571
	10.10.2 Single-phase cable with metallic sheath	571
	10.10.3 Three-phase cable with metallic sheaths	573
10.11	Analysis of earth return currents for short-circuits in	
	substations	576
10.12	Analysis of earth return currents for short circuits on overhead	i
~ • • • •	line towers	577
10.13	Calculation of rise of earth potential	579
10.14	Examples	580
10.15	Electrical interference from overhead power lines to metal	
	pipelines	584
	10.15.1 Background	584
	10.15.2 Electrostatic or capacitive coupling from power lines t	0
	pipelines	585
	10.15.3 Electromagnetic or inductive coupling from power line	es
	to pipelines	588
	10.15.4 Resistive or conductive coupling from power system	ıs
	to pipelines	595
	10.15.5 Examples	595
Further	r reading	603
Appen	ndices	605
A.1	Theory and analysis of distributed multi-conductor lines and	
	cables	605
A.2	Typical data of power system equipment	608
	A.2.1 General	608
	A.2.2 Data	609
		/40
Index		619

xvi Contents

	10.2.2	Electrical resistance of the human body	552	
	10.2.3	Effects of ac current on the human body	553	
10.3	Substat	ion earth electrode system	555	
	10.3.1	Functions of substation earth electrode system	555	
	10.3.2	Equivalent resistance to remote earth	555	
10.4	Overhead line earthing network			
	10.4.1	Overhead line earth wire and towers earthing network	561	
	10.4.2	Equivalent earthing network impedance of an infinite		
		overhead line	561	
10.5	Analysis of earth fault ZPS current distribution in overhead line			
	earth wire, towers and in earth			
10.6	Cable e	earthing system impedance	567	
10.7	Overall substation earthing system and its equivalent impedance			
10.8	Effect of system earthing methods on earth fault current			
	magnitude			
10.9	Screeni	ing factors for overhead lines	569	
10.10	Screeni	ing factors for cables	571	
	10.10.1	General	571	
	10.10.2	Single-phase cable with metallic sheath	571	
	10.10.3 Three-phase cable with metallic sheaths			
10.11	Analysis of earth return currents for short-circuits in			
	substat	ions	576	
10.12	Analys	is of earth return currents for short circuits on overhead		
	line tov	vers	577	
10.13	Calcula	ation of rise of earth potential	579	
10.14	Examp	les	580	
10.15	•			
	pipelin	es	584	
	10.15.1	Background	584	
	10.15.2	Electrostatic or capacitive coupling from power lines to		
		pipelines	585	
	10.15.3	Electromagnetic or inductive coupling from power lines		
		to pipelines	588	
	10.15.4	Resistive or conductive coupling from power systems		
		to pipelines	595	
	10.15.5	Examples	595	
Further	reading	g	603	
Appen			605	
A. 1		and analysis of distributed multi-conductor lines and		
	cables		605	
A.2		l data of power system equipment	608	
	A.2.1	General	608	
	A.2.2	Data	609	
Index			619	

xvi Contents

	10.2.2	Electrical resistance of the human body	552	
		Effects of ac current on the human body	553	
10.3		ion earth electrode system	555	
	10.3.1	Functions of substation earth electrode system	555	
		Equivalent resistance to remote earth	555	
10.4	Overhead line earthing network			
	10.4.1	Overhead line earth wire and towers earthing network	561	
	10.4.2	Equivalent earthing network impedance of an infinite		
		overhead line	561	
10.5	Analysis of earth fault ZPS current distribution in overhead line			
	earth wire, towers and in earth			
10.6		earthing system impedance	567	
10.7	Overall substation earthing system and its equivalent impedance		567	
10.8		of system earthing methods on earth fault current		
	magnitude			
10.9		ing factors for overhead lines	569	
10.10		ing factors for cables	571	
		General	571	
	10.10.2	Single-phase cable with metallic sheath	571	
		Three-phase cable with metallic sheaths	573	
10.11	Analysis of earth return currents for short-circuits in			
	substat		576	
10.12	Analys	is of earth return currents for short circuits on overhead		
	line tov	wers	577	
10.13	Calcula	ation of rise of earth potential	579	
10.14	Examp		580	
10.15	1			
	pipelines			
	10.15.1	Background	584	
	10.15.2	2 Electrostatic or capacitive coupling from power lines to		
		pipelines	585	
	10.15.3	Electromagnetic or inductive coupling from power lines		
		to pipelines	588	
	10.15.4	Resistive or conductive coupling from power systems		
		to pipelines	595	
	10.15.5	5 Examples	595	
Further	reading		603	
Appen	dices		605	
A.1	Theory and analysis of distributed multi-conductor lines and			
	cables		605	
A.2	Typica	l data of power system equipment	608	
	A.2.1	General	608	
	A.2.2	Data	609	
Indov			619	