

Dispersal in Plants A POPULATION PERSPECTIVE

ROGER COUSENS, CALVIN DYTHAM & RICHARD LAW

Contents

Pr	Pretace		
1	Introduction	1	
	1.1 Dispersal, centre stage	1	
	1.2 The framework	1	
	1.3 The terminology	3	
Part	Part A Dispersal of individual propagules		
2	Contribution of the parent plant to dispersal	9	
	2.1 Introduction	9	
	2.2 Initial locations of propagules	9	
	2.3 Timing of maturity	15	
	2.4 Separation from the parent	17	
	2.5 Launching mechanisms	20	
	2.6 Other parental traits	22	
	2.7 Conclusions	23	
3	Attributes of propagules that aid dispersal	24	
	3.1 Introduction	24	
	3.2 Aerodynamic traits	25	
	3.2.1 Dust propagules	28	
	3.2.2 Plumed propagules	28	
	3.2.3 Plane-winged propagules	32	
	3.2.4 Rotating propagules	33	
	3.2.5 Tumbling structures	33	
	3.2.6 Ballistic propagules	34	
	3.2.7 Un-adapted propagules	34	
	3.2.8 Comparisons of aerodynamic propagule types	34	
	3.3 Traits enabling flotation	35	
	3.4 Traits enabling dispersal by animals	38	
	3.4.1 Traits encouraging immediate ingestion	39	
	3.4.2 Traits encouraging deliberate removal	44	
	3.4.3 Traits leading to dispersal on the outside of animals	45	
	3.5 Miscellaneous traits	47	
	3.6 Conclusions	49	
4	Post-release movement of propagules	50	
	4.1 Introduction	50	
	4.2 Movement through the air	51	

4	.3 Dispersal by water	56
4	.4 Dispersal by animals	58
	4.4.1 Dispersal by ingestion	60
	4.4.2 Dispersal by deliberate removal	67
	4.4.3 Discarding seeds at the source	68
	4.4.4 Dispersal on the outside of animals	69
4	i.5 Dispersal by humans	70
4	6.6 Conclusions	73
Part B	Patterns of dispersal from entire plants	75
	Patterns of dispersal from entire plants	77
5	5.1 Introduction	77
	5.2 Ways of summarizing dispersal patterns	77
	5.2.1 Point patterns	<i>7</i> 7
	5.2.2 Density at sampled locations	80
	5.2.3 Comparison	83
Į	5.3 Empirical entire-plant dispersal data	85
	5.3.1 Non-overlapping shadows	86
	5.3.2 Multiple source plants	93
ļ	5.4 Predictions of entire-plant dispersal from models	97
	5.4.1 Effects of environmental variation	98
	5.4.2 Influence of multiple vectors	99
	5.4.3 Influence of plant architecture	101
	5.5 Sampling and experimental designs for propagule density	105
	5.5.1 Trap design	106
	5.5.2 Locations to be sampled	106
	5.5.3 Number of traps at each location	108
	5.5.4 Number of replicate plants	109
	5.5.5 Fitting a model	109
	5.6 Conclusions	110
Part C	Dispersal in population dynamics and Evolution	111
6	Invasions and range expansion	113
	6.1 Introduction	113
	6.2 Pattern within spreading populations	114
	6.3 Rate of increase in area occupied	118
	6.4 Rate at which population boundaries move	122
	6.4.1 Reaction-diffusion models	122
	6.4.2 Integro-difference models	126
	6.4.3 Cellular models	131
	6.4.4 From a paradox to a predicament	133
	6.5 Conclusions	134
7	Propagule dispersal and the spatial dynamics of	
	populations and communities	135
	7.1 Introduction	135
	7.2 Dispersal and spatial patterns in nature	135
	7.2.1 Spatial patterns	135

		7.2.2 Statistics of spatial patterns	136
		7.2.3 Limits to inference from spatial patterns	140
	7.3	Dispersal and local spatial dynamics of single species	141
		7.3.1 A stochastic model	141
		7.3.2 Dynamics in a homogeneous environment	142
		7.3.3 Dynamics in a spatially heterogeneous environment	144
	7.4	Dispersal and local spatial dynamics of two competing species	146
		7.4.1 A model for dynamics of spatial moments	147
		7.4.2 Dynamics in a homogeneous environment	148
		7.4.3 Dynamics in a spatially heterogeneous environment	150
	7.5	Dispersal and dynamics of metapopulations	151
	7.6	Dispersal and community structure	152
		7.6.1 Dispersal and the colonization-competition trade-off	152
		7.6.2 Dispersal, competition, and biodiversity	153
		7.6.3 Dispersal, productivity, and biodiversity	153
		7.6.4 Dispersal and the Janzen–Connell hypothesis	154
		7.6.5 Dispersal and the neutral model	155
	7.7	Conclusions	156
8	The	evolution of dispersal	157
		Introduction	157
		8.1.1 Selective forces acting on dispersal	157
		8.1.2 Pollen and seed dispersal	158
	8.2	Processes acting against dispersal	158
		8.2.1 Cost of dispersal structures	158
		8.2.2 Cost in sacrifice of viability and germination	159
		8.2.3 Movement away from areas of local adaptation	159
		8.2.4 Habitat heterogeneity—pattern and variation	159
		8.2.5 Marginal and island populations	160
		8.2.6 Mutualistic interactions—mycorrhizae, rhizobia,	
		facilitation, and pollination	160
		8.2.7 Perilous dispersal	161
	8.3	Processes acting to favour dispersal	161
		8.3.1 Group selection	161
		8.3.2 Kin selection	162
		8.3.3 Inbreeding depression	164
		8.3.4 Habitat turnover	165
		8.3.5 Population dynamics	165
		8.3.6 Expansion to new areas	166
		8.3.7 Avoidance of predators and pathogens	167
		8.3.8 Avoidance of competition	168
	8.4	Other aspects to the evolution of dispersal	168
		8.4.1 Dispersal and mating system	168
		8.4.2 Dispersal in time	169
		8.4.3 Conditional dispersal	169
		8.4.4 Dispersal polymorphisms	171
		8.4.5 Timescales: long, medium, or short	171

8.4.6 The shape of the frequency distribution	
of dispersal distances	171
8.4.7 A complex relationship with granivores	172
8.4.8 Directed dispersal	172
8.4.9 Caveats and confusions: phylogenetic independence	173
8.5 Conclusions	173
9 Concluding remarks	174
9.1 Introduction	174
9.2 Overview	174
9.2.1 Part A: Dispersal of individual propagules	174
9.2.2 Part B: Patterns of dispersal from entire plants	175
9.2.3 Part C: Dispersal in population dynamics and evolution	. 176
9.3 Priorities for dispersal research	177
References	179
Plant species index	201
Index	205