


John Nelson

Contents

	know eface	ledgme	ents	xvii xix
1	The	•	nents and foundations of signalling	1
	1.1		tion of terms used	2
			First messengers	2
		1.1.2	Glands and types of secretion	2
			Ligands	4
		1.1.4	Agonists	4
		1.1.5	Antagonists	5
		1.1.6	Receptors for first messengers	6
		1.1.7	Second messengers	8
			Soluble second messengers	9
		1.1.9	Membrane-bound second messengers	9
	1.2	Histor	ical foundations	12
		1.2.1	When did the discipline of cell signalling begin?	12
		1.2.2	The discovery of 'hormones' – Bayliss and Starling, 1902	13
		1.2.3	The discovery of insulin and the beginning of endocrine	
			therapy – Banting and Best, 1921	14
		1.2.4		14
		1.2.5	Discrimination of beta- and alpha-adrenergic responses -	
			Ahlquist, 1948	15
		1.2.6	'Acrasin' = cAMP - the ancient hunger signal	15
	1.3	Early 1	milestones in signal transduction research	16
		1.3.1	Cell-free experiments and the discovery of cAMP -	
			Sutherland, Rall and Berthet, 1957	16
		1.3.2	Fluoride – a stimulator of G proteins	16
		1.3.3	ATP and subcellular fractionation	17
		1.3.4	Heat-stable factor – cAMP	17
		1.3.5	The problem with rats	18
		1.3.6	The discovery of hormonally regulated protein kinases –	
			phosphorylase kinase, serine phosphorylation and Ca ²⁺ –	
			Krebs and Fischer, 1958–1968	18
		1.3.7	Discovery of calcium as activator of phosphorylase	
			kinase	19
		1.3.8	cAMP-dependent protein kinase	19
	1.4	The d	iscovery of receptors and G proteins	20
		1.4.1	Radioligand receptor assays prove receptors are discrete	
			entities	20

vi CONTENTS

		1.4.2	Oestrogen receptor directly detected by radioligand	
			binding assays – Jensen and Gorski, 1962	20
		1.4.3	Purification of the β -adrenergic receptor – Caron and	0.4
			Lefkowitz, 1976	21
		1.4.4	The discovery of G proteins. Guanine nucleotides, fluoride	
			and aluminium - Gilman and Rodbell, 1971-1983	21
		1.4.5	Magnesium	21
			High and low glucagon affinities	22
			GTP (contaminant of ATP) lowers 7-pass receptor affinity	22
		1.4.8	3 3 3	23
			cAMP toxicity and clonal mutants of S49 cells	24
			Aluminium is needed for fluoride activation of G proteins	25
			Use of bacterial toxins	25
			The calcium signal	26
	1.5		pathways	26
		1.5.1		
			a second messenger	26
			PFK-1 and FBP-1	28
		1.5.3	PFK-2/FBP-2 – a 'tandem' enzyme	29
		1.5.4	, , , ,	29
			Control of PFK-2/FBP-2 by phosphorylation – heart	30
			F-2,6-bisP in tumours	32
	1.6		ancient hunger signal – primitive signalling in	
			azoans and prokaryotes	32
		1.6.1	Slime moulds	32
		1.6.2	cAMP and <i>E. Coli</i>	34
	Refe	rences		35
2	Enzy	mes ar	nd receptors – quantitative aspects	39
	2.1	Enzym	e steady state assays – Michaelian enzymes	39
		2.1.1	How are enzymes assayed?	40
		2.1.2	Steady state	40
		2.1.3	K_{M} – the Michaelis-Menten constant	42
		2.1.4	Vmax is reached when the enzyme becomes saturated	42
		2.1.5	What does the K_{M} mean?	43
		2.1.6	Non-Michealian enzymes – G proteins and Ras	45
		2.1.7	Non-Michaelian enzymes - cooperativity and allostery	45
	2.2	Recept	tor equilibrium binding assays	45
		2.2.1	Equilibrium	45
		2.2.2	K _D - the dissociation constant	47
		2.2.3	Bmax – the maximum binding capacity is a 'count' of the	
			receptors in a sample	47
		2.2.4	The meaning of K_D	49
			Displacement assays	50

			CONTENTS	vii
	2.3	The re	ceptor's environment	51
	5	2.3.1	·	52
		2.3.2		
			negative cooperativity	53
		2.3.3	Negative cooperativity of the insulin receptor or two	
			site model	55
		2.3.4	Site heterogeneity of the EGF receptor – independent	
			two site model?	57
	2.4		ne nucleotides and the agonist 'affinity-shift'	
			ass receptors	59
		2.4.1	The ternary complex 'equilibrium' model	60
		2.4.2	The 'empty pocket' form of Gα	62
		2.4.3	The thermodynamic 'catalytic' or 'kinetic' model	62
		2.4.4	5 5	64
		2.4.5	The effect of limiting concentrations of G protein	c F
		2.4.6	on agonist binding	65
		2.4.6	Agonist binding in membrane preparations where the cognate G protein is in unlimited supply	65
		2.4.7	In vivo GTP versus GDP concentrations	66
	Pofo	rences	TH VIVO OTT VEISUS ODI CONCENTIACIONS	67
	Neie	rences		07
3	Mod	ules ar	nd motifs in transduction	71
	3.1	Src ho	omology domains	72
		3.1.1	Src-homology-1 (SH1) region represents the tyrosine	
			kinase domain	72
		3.1.2	Src-homology-2 (SH2) modules are phosphotyrosine-	
			binding domains	73
		3.1.3	Src-homology-3 (SH3) modules are polyproline-binding	
			domains	75
			Src-homology-4 (SH4) motif and Src 'unique domain'	78
		3.1.5	The C-terminal Src regulatory motif and Src family	
			autoinhibition	82
	3.2		perfold modules: PH-, PTB- and PDZ-domains	85
		3.2.1	PH domains – phosphoinositide lipid-binding modules,	
			or $G\beta/\gamma$ -interacting modules	86
		3.2.2		86
		3.2.3	,	00
	2.2	D b .	peptide binding modules	88
	3.3		omology (BcrH) domains	88
	3.4 3.5		omology (DH) domains – partners of PH domains	89 90
	3.6		homology (BH) domains inding domains	90
	3.7		hoserine/phosphothreonine-binding domains	90
	J.1	3.7.1		93
		3.7.1	THE PROCESS	33

viii CONTENTS

		3.7.2	Forkhead-associated domains	95
	3.8	EF-har	nds – calcium-sensing modules	95
	3.9	C1 and	$1 \text{ C2 domains} - a \text{ Ca}^{2+}$ -activated, lipid-binding, module	96
	Refe	rences		97
4	Prot	ein kin	ase enzymes – activation and auto-inhibition	101
	4.1	•	otein kinase fold	102
		4.1.1	Invariant residues	102
			The phosphate-binding loop or 'p-loop'	104
		4.1.3	Critical differences between serine/threonine kinases	
			and tyrosine kinases	107
		4.1.4	Closed and open conformations	108
		4.1.5	The catalytic loop or 'C-loop'	109
		4.1.6	The activation segment/loop or 'A-loop'	112
	4.2	Protei	n kinases activated by A-loop phosphorylation	113
		4.2.1	Phosphorylation of A-loop residues and assembly	
			of active site	114
		4.2.2	The A-loop and catalysis – transition state and site closure	115
		4.2.3	ATP binding	115
		4.2.4	A-loop and autoinhibition	116
	4.3	The in	sulin receptor kinase (IRK) – a 'gated' kinase	116
	4.4	Cyclin	dependent kinases	119
		4.4.1	Monomeric Cdk2 structures	120
		4.4.2	Cyclin-bound unphosphorylated Cdk	123
		4.4.3	Cyclin-bound phosphorylated Cdk	123
	4.5	Secon	dary inhibition mechanisms – PKA	124
		4.5.1	,	
			cleft of PKA	126
			The extended binding surface of R _{SUB}	126
	_		Effects on cAMP binding at CBD-A	129
	Refe	rences		131
5	7-pa	ass rece	eptors and the catabolic response	133
	5.1	7-pass	receptor phylogeny	134
	5.2	Functi	onal mechanisms of 7-pass receptors	134
		5.2.1	Gαs-coupling receptors – glucagon- and β-adrenergic	
			receptors - stimulation of cAMP production	135
		5.2.2	G α q-coupling receptors – bombesin- and α 1-adrenergic	
			receptors – stimulation of calcium release from the	
			endoplasmic reticulum	135
		5.2.3	Gαi-coupling receptors – somatostatin and α2-adrenergic	
			receptors – inhibition of adenylyl cyclase, activation of K ⁺	
			ion channels, inhibition of Ca ²⁺ channels, and activation	
			of phospholipase Cβ2	136

CONTENTS ix

	5.2.4	cAMP-dependent protein kinase (PKA) pathway leading	
		, , , , , , , , , , , , , , , , , , , ,	107
	Amalif	to glycogenolysis ication	137 137
5.3	5.3.1		137
	5.3.2		139
	5.5.2	from partial occupancy of receptors	139
	5.3.3	Collision coupling versus pre-coupling	139
	5.3.4		139
	5.3.5		140
F /		lyl cyclase – signal limitation	140
5.4	5.4.1	Adenylyl cyclase – signal termination and PDE isoforms	140
	5.4.2	Crosstalk and negative feed back	141
5.5	_	lyl cyclase isoforms	141
- -		Transmembrane isoforms of adenylyl cyclase	141
5.6		eins and the adenylyl cyclase effector isoforms	143
		Gs-coupling catabolic receptors	148
	5.6.2	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1/0
	F 6 3	glycogenolysis	148
	5.6.3	β-Adrenergic/glucagon-receptor inhibition of glycogen	1/0
	гс/	synthesis	148
	5.6.4		148
	5.6.5	Diffusible cascade or scaffolded pathway atory subunits of PKA and A-Kinase Anchoring Proteins	149
5.7	_	ž –	149
	5.7.1	RII regulatory subunits – reversible phosphorylation	150
	E 7 3	and scaffolding	150
	5.7.2		153
F 0	5.7.3		154
5.8	-	horylase kinase PhK structure	155
	5.8.1		155
	5.8.2	•	156
	5.8.3	Regulatory subunits	156
	5.8.4	, , ,	157
	5.8.5	Possible mechanisms of activation and holoenzyme	455
e 0	Clarac	conformation	157
5.9		gen phosphorylase	160
	5.9.1	Glycogen phosphorylase isoforms	160
	5.9.2	Glycogen phosphorylase allosteric sites	161
	5.9.3	Control by hormones or metabolite effectors – functional	4.5.6
	E O /	differences between muscle and liver isoforms	162
	5.9.4	How do these properties of GP isoforms fit with	460
	E 0 E	metabolic necessities?	163
	5.9.5	Structural changes induced by GP activating signals T-state to R-state transition	165 165
	3.9.D	I-MALE TO K-MAIE HAUSHION	I n h

CONTENTS

x

		5.9.7	Activation by phosphorylation	165
		5.9.8	Activation by 5'-AMP	168
		5.9.9	Inhibition by glucose	169
	5.10	Glycog	en synthase	169
		5.10.1	GSK-3 – a multi-tasking enzyme	170
	5.11	Remair	ning questions – scaffolds and alternate	
		second	messenger 'receptors'	171
		5.11.1	Protein kinase C	171
		5.11.2	Lipid activation of PKC – DAG-binding isoforms are also	
			activated by phorbol esters	172
		5.11.3	Alternative DAG/phorbol ester receptors	172
		5.11.4	PKC scaffolds	173
		5.11.5	What does PKC actually do?	173
		5.11.6	Alternate cAMP receptors	174
	5.12	G prote	ein coupled receptor kinases – downregulators,	
		signal	integrators	174
	Refe	rences		175
6	Sing	le pass	growth factor receptors	179
	6.1	Recept	or tyrosine kinases – ligands and signal transduction	179
			RTK ligands and receptors	180
	6.2	The PD	OGFR family – signal transduction	181
		6.2.1	PDGFR signal transduction particle	182
		6.2.2	MAP kinases and MAPK kinases	184
		6.2.3	PDGFR kinase insert tyrosines – PI-3-kinase, and	
			Ras versus Rac	186
		6.2.4	PDGFR, PI-3-kinase, Ras and mitosis	187
		6.2.5	PDGFR, PI-3-kinase, Rac and motility	187
		6.2.6	PDGFR insert phosphotyrosines and Ras regulators	188
		6.2.7	Sos-1 – a bi-functional guanine nucleotide exchange	
			factor (GEF)	189
		6.2.8	Sos – the switch from RasGEF to RacGEF	190
		6.2.9	PDGFR C-terminal tail tyrosines	192
		6.2.10	Alternative Grb-2 docking sites: SHP-2 and Shc	192
		6.2.11	Shc	192
		6.2.12	PLCγ	193
		6.2.13	PDGFR Juxtamembrane tyrosines	193
	6.3	PDGFR	family autoinhibition: juxtamembrane and A-loop	
		tyrosir	nes	194
		6.3.1	PDGFR juxtamembrane and A-loop tyrosines →	
			phenylalanines	194
		6.3.2	PDGFR juxtamembrane (Y-Y → A-A) mutant unresponsive	
			to ligand	195
		6.3.3	PDGFR Y579/581F is stuck in an autoinhibited state	195

CONTENTS

		6.3.4	PDGFR A-loop (Y \rightarrow F) mutant cannot bind exogenous	
			substrate polypeptides	195
		6.3.5	PDGFR juxtamembrane and A-loop tyrosines → alanines	196
		6.3.6	PDGFR Y579/581A is constitutively active	196
	6.4	Crystal	l structure of kinase domain of PDGFR family-A member: Flt-3	197
		6.4.1	Flt-3 juxtamembrane interactions and autoinhibition/	
			activation	197
	6.5	The Er	bB family	200
		6.5.1	EGFR family members and ligands	200
	6.6	ErbB-t	ype receptor signal transduction particles	202
		6.6.1	The epidermal growth factor receptor kinase – a	
			pre-assembled active site	204
	6.7	Autoin	hibition of EGFR and activation	205
		6.7.1	Ligand binding, dimerisation and activation	206
		6.7.2	The EGFR juxtamembrane domain – a nexus for crosstalk	207
		6.7.3	EGFR activation and calcium	209
	Refe	rences		211
7	G pr	oteins	(I) - monomeric G proteins	215
-	7.1		ication	216
	7.2		d OFF states of Ras-like proteins	217
	7.3		a multi-domain serine/threonine kinase family	
			effectors	218
		7.3.1	Raf-Ras binding - translocation of Raf from cytosol to	
			membrane	219
		7.3.2	cAMP inhibition of cell division <i>via</i> sequestration of Raf	221
			Raf activation by translocation	221
		7.3.4	· · · · · · · · · · · · · · · · · · ·	222
		7.3.5	Homologous or heterologous trans-autophosphorylation	223
		7.3.6	Erk-1/2-type MAPK pathway activation	223
		7.3.7		223
		7.3.8	Signal termination	224
		7.3.9	Other activating signals for Raf	225
	7.4	Ras pr	rotein structure and function	225
		7.4.1	The GTPase site of Ras: G-boxes and switch regions	226
		7.4.2	The P-loop (G-1)	226
		7.4.3	Switch I (G-2)	228
		7.4.4	Switch II (G-3)	230
	7.5	The sv	witch mechanism: hydrolysis-driven conformational	
		chang	e in Ras	231
	7.6	GTP h	ydrolysis	232
		7.6.1	Structural effects of loss of γ -phosphate	234
	7.7	Effect	or and regulator binding surfaces of Ras	234
		7.7.1	RasGAP	234

xii CONTENTS

		7.7.2	RasGEFs	236
		7.7.3	The Ras effector region and Raf binding	239
		7.7.4	Rap1 and cAMP effects	240
	Refe	rences		241
8	G pr		(II) – heterotrimeric G proteins	245
	8.1		ication and structural relationship with Ras	246
	8.2	Gα-sub	ounits: the Ras-like core, G-boxes and switch regions	249
		8.2.1	The P-loop	250
			Switch I/G-2	250
		8.2.3	Switch I/insert-1: a tethered GTPase-activating	
			protein (GAP)	253
			Switch II/G-3	253
			Switch III	254
	8.3		change, hydrolysis and switch movements	254
			GTP conformations	255
			The transition state	256
	8.4		nd receptor-binding surfaces of α-subunits	256
			The β/γ binding site of GDP-occupied α	256
			The receptor-binding interface of GDP-occupied G proteins	257
			Receptor-induced GDP dissociation and nucleotide exchange	259
			Switch II helix rotation	259
		8.4.5		
			α-subunits	262
	8.5		ators of G protein activity – the 'RGS' protein family	263
			RGS proteins and GTPase activation	263
		8.5.2	•	
			crosstalk with other pathways	264
			Gαi/o/q GEF proteins – unrelated to RGS	265
	0.0		GRKs – RGS domain-containing S/T-kinases	265
	8.6	_	transduction by β/γ subunits	266
	Kere	rences		268
9			receptor and the anabolic response	271
	9.1		sulin receptor – a pre-dimerised RTK with a unique substrate	271
		9.1.1	,	273
		9.1.2	Three clusters of autophosphorylated tyrosines in the InsR	
			intracellular region	273
	9.2		and IGF-IR: differentiation leads differential tissue effects	275
	9.3		res of metabolic control in key tissues	276
	9.4		downstream signalling pathways	277
		9.4.1	MAPK/p90Rsk pathway only mediates growth effects	277
		9.4.2	PI-3-kinase is the prime anabolic effector – is there	
			a second (non-MAPK) anabolic pathway: (CAP-Cbl-Crk)?	278

CONTENTS	xiii
----------	------

	9.5	The ins	sulin receptor substrate – a surrogate signal transduction	
		particle	9	278
		9.5.1	IRS protein targetting	279
		9.5.2	IRS-interacting proteins - Class 1A PI-3-kinases	280
	9.6	IRS-1/2	2 phosphorylation and PI-3-kinase activation	280
	9.7	Protein	phosphatase-1 (PP-1)	281
			Glycogen granule targetting of PP-1	281
			p70Rsk – inducer of GS dephosphorylation?	282
	9.8		reverses effects of adrenaline and/or glucagon	283
		9.8.1	Insulin's reversal of adrenaline-induced glycogenolysis	
			in muscle	283
		9.8.2	Insulin's reversal of adrenaline- and glucoagon-induced	
			glycogenolysis in liver	283
		9.8.3	Insulin's reversal of adrenalin/glucagon-induced lipolysis	
			in adipose tissue	285
	9.9		ownstream effects – glycogen synthesis	285
			PKB and GSK-3 inactivation	286
		9.9.2	PKC- ζ – negative feedback control	287
		9.9.3	PIP3 downstream effects – GLUT4 mobilisation	287
	9.10		questions remain	289
		9.10.1	Insulin activates the Erk1/2 MAPK pathway – why, then,	
			is the insulin receptor not as mitogenic as the	
			PDGF receptor	289
		9.10.2	PDGR- β activates PI-3-kinase but does not exert anabolic	
			effects like the insulin receptor Why?	290
		9.10.3	The insulin receptor and the IGF-I receptor are	
			homologues – why is one anabolic and the other mitogenic?	290
		9.10.4	Do differing <i>C</i> -terminal tails cause differing regulation	
			of growth responses in InsR versus IGF-IR?	291
			IFG-II, insulin receptor-A and 'half receptors'	292
	Refe	rences		293
10	Mito	nens a	nd cell cycle progression	297
			itogenic response and the cell division cycle	298
			Large scale biophysical events in the cell division cycle	298
			The cyclin model	298
			Summary of the budding yeast cell cycle	301
			Mammalian cyclin cycle model	301
			Embryonic cell cycle has no 'gaps'	302
	10.2		mpetency, and the point of no return in G1 – the	
		'R-poir		303
			What is GO?	303
			The commitment point and competency factors	304
			Growth factors and the fibroblast cell cycle	304

xiv CONTENTS

10.3	Oncogen-	e products derived from growth factor pathway	
	compone	ents	305
10.4	Transcrip	otion and cyclins	306
10.5	Cyclin de	ependent kinases	307
	10.5.1	Activating and inactivating phosphorylations	307
	10.5.2	Inactivating phosphorylations of Cdks	307
	10.5.3	Activating dephosphorylations of Cdks	309
	10.5.4	DNA damage prevents dephosphorylation of Cdks	309
10.6	Deactiva	tion by cyclin destruction	309
	10.6.1	APC/cyclosome (APC/C) and SCF - E3 ubiquitin ligase	
		complexes	309
	10.6.2	APC/C	310
	10.6.3	SCF	310
10.7	Cyclin de	ependent kinases – activation through cyclin synthesis	311
	10.7.1	Two sets of early genes – immediate and delayed	311
10.8	_	c pathway downstream of single pass tyrosine kinase	
	receptors		311
	10.8.1	Transcription factor families involved in triggering	
		the mitogenic response	311
	10.8.2	Мус	311
	10.8.3	Induction of Fos by 'serum response element' binding	312
	10.8.4	The Ets family of 'ternary complex transcription	
		factors' - Elk-1, Sap-1/2	312
	10.8.5	The 'serum response factor' – MADS box-containing	
		transcrition factors	312
	10.8.6	Signalling sequence of single-pass tyrosine kinase	
		receptors leading to cyclin D induction – serum	240
	4007	response element	313
	10.8.7	Activation of Jun (and Myc) by inactivation of	242
	1000	glycogen synthase kinase-3 (GSK-3)	313
	10.8.8	AP-1 complexes – bZip transcription factors	315
	10.8.9 10.8.10	AP-1 response elements on DNA	318
10.9		AP-1 and cyclin D1 induction	319
10.9		Cdk-4/6 – only important substrate is R _B astoma-related 'pocket proteins' – negative	319
10.10		ors of E2F	319
	10.10.1	Phosphorylation/inactivation mechanism	321
	10.10.1	The E2F family of transcription factors – the targets	221
	10.10.2	of the 'pocket proteins'	323
	10.10.3	R _B – a DNA-binding, E2F protein-binding tumour	525
	10.10.0	suppressor	324
	10.10.4	E2F targets – genes for DNA replication and licensing,	244
	10.10.4	delayed early response genes (cyclin E and A),	
		and NPAT	324

CONTENTS xv

10.11	De-repression of the cyclin E gene by cyclin D/Cdk-4/6	325
	10.11.1 Cyclin E/Cdk-2 substrates – R _B , NPAT, nucleophosmin	325
	10.11.2 Cyclin E – licensing and loading of helicase	326
10.12	Cyclin A/Cdk-2 - S-phase progression and termination	327
	10.12.1 Cyclin A/Cdk-2 – prevention of origin re-firing	327
	10.12.2 Terminating S-phase – cyclin A effects	327
10.13	The controlled process of mammalian DNA replication	328
	10.13.1 How does a cell know when to dvivide?	328
	10.13.2 DNA replication	328
	10.13.3 Pre-replicative complex formation begins in G1	328
	10.13.4 Helicase loading	330
	10.13.5 Geminin control of helicase loading and licensing	331
	10.13.6 Origin firing - Ddk and Cdc45	331
10.14	Cyclin B translocations and M-phase	332
	10.14.1 What triggers mitosis?	332
	10.14.2 POLO – the ultimate mitotic trigger?	333
10.15	Cdk inhibitors	334
	10.15.1 The INK proteins	334
	10.15.2 The Cip/WAF family	335
10.16	p53 cell cycle arrest and apoptosis	336
	10.16.1 p53 and Cip/WAF	336
	10.16.2 Mdm2 and p19 ^{Arf} – control of p53	337
	10.16.3 Apoptosis	338
	10.16.4 Apoptosis or cell cycle arrest - majority verdict by a	
	jury of Cdk inhibitors, survival factors, and	
	pro-apoptotic factors	338
	10.16.5 BH domain proteins and mitochondrial outer	
	membrane permeabilisation	339
	10.16.6 p53 and apoptosis	339
	10.16.7 Survival factors opposing induction of apoptosis	340
10.17	7-pass receptors and mitosis	340
	10.17.1 The Gsp oncogene	340
	10.17.2 Wnt/β-catenin	341
10.18	Concluding remarks and caveats	345
Refere	nces	347
Appendix	1: Worked examples	355
A.1	Enzyme and receptor assays worked out from raw data examples	355
	A.1.1 An alkaline phosphatase assay	355
Appendix	2: RasMol: installation and use	365
Index		377