Pearson International Edition ## Contents ## PREFACE XV | 1 | THE SOILS A | Around Us 1 | | |----|-------------|--|-------------| | | 1.1 | Functions of Soils in Our Ecosystem | 2 | | | | Medium for Plant Growth | | | | 1.3 | Regulator of Water Supplies | 3
7 | | | | Recycler of Raw Materials | | | | 1.5 | Modifier of the Atmosphere | 8 | | | 1.6 | Habitat for Soil Organisms | 8
8
9 | | | | Engineering Medium | 10 | | | | Pedosphere as Environmental Interface | 1 1 | | | | Soil As a Natural Body | - 11 | | | | The Soil Profile and Its Layers (Horizons) | 14 | | | | Topsoil and Subsoil | 16 | | | | Soil: The Interface of Air, Minerals, Water, and Life | 17 | | | 1.13 | Mineral (Inorganic) Constituents of Soils | 19 | | | | Soil Organic Matter | 21 | | | | Soil Water: A Dynamic Solution | 23 | | | | Soil Air: A Changing Mixture of Gases | 24 | | | 1.17 | Interaction of Four Components to Supply Plant Nutrients | 25 | | | | Nutrient Uptake by Plant Roots | 27 | | | 1.19 | Soil Quality, Degradation, and Resilience | 29 | | | 1.20 | Conclusion | 30 | | | | Study Questions | 30 | | | | References | 31 | | 2: | FORMATION | OF SOILS FROM PARENT MATERIALS 32 | | | | 2.1 | Weathering of Rocks and Minerals | 33 | | | | Factors Influencing Soil Formation | 40 | | | | Parent Materials | 41 | | | | Climate | 53 | | | 2.5 | Biota: Living Organisms | 56 | | | 2.6 | Topography | 60 | | | | Time | 62 | | | | Four Basic Processes of Soil Formation | 64 | | | | The Soil Profile | 69 | | | 2.10 | Conclusion | 73 | | | | Study Questions | 74 | | | | References | 74 | | 5 JOIL CLASSII | FICATION / O | | |----------------|---|------------| | 3.1 | Concept of Individual Soils | 77 | | 3.2 | Comprehensive Classification System: Soil Taxonomy | 78 | | 3.3 | Categories and Nomenclature of Soil Taxonomy | 85 | | | Soil Orders | 87 | | | Entisols (Recent: Little if Any Profile Development) | 91 | | | Inceptisols (Few Diagnostic Features: Inception of B Horizon) | 92 | | | Andisols (Volcanic Ash Soils) | 93 | | | Gelisols (Permafrost and Frost Churning) | 95 | | | Histosols (Organic Soils without Permafrost) | 97
100 | | | Aridisols (Dry Soils) | 100
102 | | | Vertisols (Dark, Swelling, and Cracking Clays) Mollisols (Dark, Soft Soils of Grasslands) | 104 | | | Alfisols (Argillic or Natric Horizon, Moderately Leached) | 107 | | | Ultisols (Argillic Horizon, Highly Leached) | 108 | | | Spodosols (Acid, Sandy, Forest Soils, Highly Leached) | 110 | | | Oxisols (Oxic Horizon, Highly Weathered) | 111 | | | Lower-Level Categories in Soil Taxonomy | 112 | | | Conclusion | 117 | | 5.10 | Study Questions | 119 | | | References | 119 | | | | | | 4 Soil Archi | TECTURE AND PHYSICAL PROPERTIES 121 | | | | | 122 | | | Soil Color Soil Trading (Sing Distribution of Soil Portioles) | 122 | | | Soil Texture (Size Distribution of Soil Particles) | 123
127 | | | Soil Textural Classes
Structure of Mineral Soils | 132 | | | Formation and Stabilization of Soil Aggregates | 136 | | | Tillage and Structural Management of Soils | 143 | | | Soil Density | 148 | | | Pore Space of Mineral Soils | 158 | | | Soil Properties Relevant to Engineering Uses | 162 | | | Conclusion | 170 | | | Study Questions | 171 | | | References | 171 | | | | | | 5 SOIL WATER | R: CHARACTERISTICS AND BEHAVIOR 173 | | | 5.1 | Structure and Related Properties of Water | 174 | | | Capillary Fundamentals and Soil Water | 176 | | | Soil Water Energy Concepts | 179 | | | Soil Water Content and Soil Water Potential | 184 | | 5.5 | The Flow of Liquid Water in Soil | 191 | | 5.6 | Infiltration and Percolation | 197 | | | Water Vapor Movement in Soils | 202 | | | Qualitative Description of Soil Wetness | 203 | | | Factors Affecting Amount of Plant-Available Soil Water | 20 | | | Mechanisms by Which Plants Are Supplied with Water | 21 | | 5.11 | Conclusion | 214 | | | Study Questions | 21: | | | References | 216 | | 6 SOIL AND T | HE HYDROLOGIC CYCLE 218 | | | | The Global Hydrologic Cycle | 219 | | | Fate of Precipitation and Irrigation Water | 22 | | - · - | · · · · · · · · · · · · · · · · · · · | | | | 6.4
6.5
6.6 | The Soil–Plant–Atmosphere Continuum Control of Evapotranspiration (ET) Liquid Losses of Water from the Soil Percolation and Groundwaters | 227
232
238
239 | |-----|--|---|--| | | 6.8 | Enhancing Soil Drainage Septic Tank Drain Fields Irrigation Principles and Practices | 243
251
255 | | | | Conclusion Study Questions References | 263
263
264 | | 7 | SOIL AERAT | ION AND TEMPERATURE 266 | | | | 7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10 | Soil Aeration—The Process Means of Characterizing Soil Aeration Oxidation-Reduction (Redox) Potential Factors Affecting Soil Aeration and E _h Ecological Effects of Soil Aeration Aeration in Relation to Soil and Plant Management Wetlands and Their Poorly Aerated Soils Processes Affected by Soil Temperature Absorption and Loss of Solar Energy Thermal Properties of Soils Soil Temperature Control Conclusion Study Questions References | 267
269
270
273
277
280
283
288
296
299
303
306
307
308 | | 8 ! | SOIL COLLO | DIDS: SEAT OF SOIL CHEMICAL AND PHYSICAL ACTIVITY | 310 | | | 8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13 | General Properties and Types of Soil Colloids Fundamentals of Layer Silicate Clay Structure Mineralogical Organization of Silicate Clays Structural Characteristics of Nonsilicate Colloids Genesis and Geographic Distribution of Soil Colloids Sources of Charges on Soil Colloids Adsorption of Cations and Anions Cation Exchange Reactions Cation Exchange Capacity Exchangeable Cations in Field Soils Anion Exchange Sorption of Pesticides and Groundwater Contamination Binding of Biomolecules to Clay and Humus Physical Implications of Swelling-Type Clays Conclusion Study Questions References | 311
315
317
322
325
328
331
333
343
345
347
349
351
354 | | 9 9 | SOIL ACIDIT | | | | | 9.2
9.3
9.4
9.5
9.6 | The Process of Soil Acidification Role of Aluminum in Soil Acidity Pools of Soil Acidity Buffering of pH in Soils Determination of Soil pH Human-Influenced Soil Acidification Biological Effects of Soil pH | 359
363
364
369
372
375
381 | | 9.9
9.10 | Alternative Ways to Ameliorate the III Effects of Soil Acidity
Lowering Soil pH | 387
393
395
396
398
399 | |---|--|---| | Soils of I | Dry Regions: Alkalinity, Salinity, and Sodicity 401 | | | 10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10 | Causes of Alkalinity: High Soil pH Development of Salt-Affected Soils Measuring Salinity and Sodicity Classes of Salt-Affected Soils Physical Degradation of Soils by Sodic Chemical Conditions Growth of Plants on Salt-Affected Soils Water-Quality Considerations for Irrigation Reclamation of Saline Soils Reclamation of Saline-Sodic and Sodic Soils Management of Reclaimed Soils | 402
409
411
415
418
420
424
428
430
436
439
440
441 | | ORGANISM | IS AND ECOLOGY OF THE SOIL 443 | | | 11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12 | Organisms in Action Organism Abundance, Biomass, and Metabolic Activity Earthworms Ants and Termites Soil Microanimals Roots of Higher Plants Soil Algae Soil Fungi Soil Prokaryotes: Bacteria and Archaea Conditions Affecting the Growth of Soil Microorganisms Beneficial Effects of Soil Organisms on Plant Communities Soil Organisms and Damage to Higher Plants Ecological Relationships Among Soil Organisms | 444
446
452
454
458
461
466
469
476
480
481
483
487
491
492 | | SOIL ORG | ANIC MATTER 495 | | | 12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10 | The Process of Decomposition in Soils Factors Controlling Rates of Decomposition and Mineralization Genesis and Nature of Soil Organic Matter and Humus Influences of Organic Matter on Plant Growth and Soils Amounts and Quality of Soil Organic Matter Carbon Balance in the Soil—Plant—Atmosphere System Factors and Practices Influencing Soil Organic Matter Levels The Greenhouse Effect: Soils and Climate Change Composts and Composting Conclusion Study Questions | 496
499
504
510
514
517
519
522
529
535
538
539
539 | | | 9.9 9.10 9.11 SOILS OF I 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11 10.12 ORGANISM 11.1 11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12 11.13 11.14 11.15 SOIL ORG. 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 | References SOILS OF DRY REGIONS: ALKALINITY, SALINITY, AND SODICITY 10.1 Characteristics and Problems of Dry Region Soils 10.2 Causes of Alkalinity: High Soil pH 10.3 Development of Salt-Affected Soils 10.4 Measuring Salinity and Sodicity 10.5 Classes of Salt-Affected Soils 10.6 Physical Degradation of Soils by Sodic Chemical Conditions 10.7 Growth of Plants on Salt-Affected Soils 10.8 Water-Quality Considerations for Irrigation 10.9 Reclamation of Saline Soils 10.10 Reclamation of Saline Soils 10.11 Management of Reclaimed Soils 10.12 Conclusion Study Questions References ORGANISMS AND ECOLOGY OF THE SOIL 443 11.1 The Diversity of Organisms in the Soil 11.2 Organisms in Action 11.3 Organism Abundance, Biomass, and Metabolic Activity 11.4 Earthworms 11.5 Ants and Termites 11.6 Soil Microanimals 11.7 Roots of Higher Plants 11.8 Soil Algae 11.9 Soil Fungi 11.10 Soil Prokaryotes: Bacteria and Archaea 11.11 Conditions Affecting the Growth of Soil Microorganisms 11.12 Beneficial Effects of Soil Organisms on Plant Communities 11.13 Soil Organisms and Damage to Higher Plants 11.14 Ecological Relationships Among Soil Organisms 11.15 Conclusion Study Questions References SOIL ORGANIC MATTER 495 12.1 The Global Carbon Cycle 12.2 The Process of Decomposition in Soils 12.3 Factors Controlling Rates of Decomposition and Mineralization 12.4 Genesis and Nature of Soil Organic Matter and Humus 12.5 Influences of Organic Matter on Plant Growth and Soils 12.6 Amounts and Quality of Soil Organic Matter 12.7 Carbon Balance in the Soil—Plant—Atmosphere System 12.8 Factors and Practices Influencing Soil Organic Matter Levels 12.9 The Greenhouse Effect: Soils and Climate Change 12.10 Composts and Composting 12.11 Conclusion | | 13 Nitrogen | AND SULFUR ECONOMY OF SOILS 542 | | |--------------|---|------------| | 13.1 | Influence of Nitrogen on Plant Growth and Development | 543 | | | Distribution of Nitrogen and the Nitrogen Cycle | 544 | | 13.3 | Immobilization and Mineralization | 545 | | 13.4 | Soluble Organic Nitrogen (SON) | 548 | | 13.5 | Ammonium Fixation by Clay Minerals | 549 | | 13.6 | Ammonia Volatilization | 550 | | 13.7 | Nitrification | 55 I | | 13.8 | The Nitrate Leaching Problem | 552 | | | Gaseous Losses by Denitrification | 557 | | | Biological Nitrogen Fixation | 562 | | | Symbiotic Fixation with Legumes | 564 | | | Symbiotic Fixation with Nonlegumes | 568 | | | Nonsymbiotic Nitrogen Fixation | 569 | | | Nitrogen Deposition from the Atmosphere | 570 | | | Practical Management of Soil Nitrogen | 572 | | | Importance of Sulfur | 577 | | | Natural Sources of Sulfur | 580 | | | The Sulfur Cycle | 583 | | | Behavior of Sulfur Compounds in Soils | 583 | | | Sulfur Oxidation and Reduction | 586 | | | Sulfur Retention and Exchange | 588 | | | Sulfur and Soil Fertility Maintenance
Conclusion | 589 | | 13.23 | Study Questions | 589
500 | | | References | 590
591 | | • | References | 186 | | 14 Soil Phos | PHORUS AND POTASSIUM 594 | | | 14.1 | Role of Phosphorus in Plant Nutrition and Soil Fertility | 595 | | | Effects of Phosphorus on Environmental Quality | 597 | | | The Phosphorus Cycle | 602 | | | Organic Phosphorus in Soils | 606 | | 14.5 | Inorganic Phosphorus in Soils | 608 | | 14.6 | Solubility of Inorganic Phosphorus in Acid Soils | 611 | | 14.7 | Inorganic Phosphorus Availability at High pH Values | 614 | | [4.8 | Phosphorus-Fixation Capacity of Soils | 615 | | 14.9 | Practical Control of Phosphorus in Soils | 619 | | 14.10 | Potassium: Nature and Ecological Roles | 622 | | | Potassium in Plant and Animal Nutrition | 623 | | | The Potassium Cycle | 625 | | | The Potassium Problem in Soil Fertility | 627 | | | Forms and Availability of Potassium in Soils | 629 | | | Factors Affecting Potassium Fixation in Soils | 632 | | | Practical Aspects of Potassium Management | 633 | | 14.17 | Conclusion | 635 | | | Study Questions | 636 | | | References | 636 | | 15 CALCIUM, | Magnesium and Trace Elements 639 | | | 15.1 | Calcium as Essential Nutrient | 640 | | | Magnesium as a Plant Nutrient | 644 | | | Deficiency versus Toxicity | 645 | | | Micronutrient Roles in Plants | 647 | | | Source of Micronutrients | 651 | | 15.6 | General Conditions Conducive to Trace Element Deficiency/Toxicity | 653 | | | 15.7 Factors Influencing the Availability of the Trace Element Cations 15.8 Organic Compounds as Chelates 15.9 Factors Influencing the Availability of the Trace Element Anions 15.10 Need for Nutrient Balance 15.11 Soil Management and Trace Element Needs 15.12 Conclusion Study Questions References | 654
666
668
669
674
678 | |--------|---|--| | 16 Pr | ACTICAL NUTRIENT MANAGEMENT 678 | | | | 16.1 Goals of Nutrient Management 16.2 Environmental Quality 16.3 Nutrient Resources and Cycles 16.4 Recycling Nutrients Through Animal Manures 16.5 Industrial and Municipal By-Product 16.6 Practical Utilization of Organic Nutrient Sources 16.7 Inorganic Commercial Fertilizers 16.8 Fertilizer Application Methods 16.9 Timing of Fertilizer Application 16.10 Diagnostic Tools and Methods 16.11 Soil Analysis 16.12 Site-Index Approach to Phosphorus Management 16.13 Some Broader Aspects of Fertilizer Practice | 679
682
691
694
701
708
712
713
718
721 | | | 16.14 Conclusion Study Questions References | 732
734
735
736 | | 17 So | L EROSION AND ITS CONTROL 739 | | | | 17.1 Significance of Soil Erosion and Land Degradation 17.2 On-Site and Off-Site Effects of Accelerated Soil Erosion 17.3 Mechanics of Water Erosion 17.4 Models to Predict the Extent of Water-Induced Erosion 17.5 Factors Affecting Interrill and Rill Erosion 17.6 Conservation Tillage 17.7 Vegetative Barriers 17.8 Control of Gully Erosion and Mass Wasting 17.9 Control of Accelerated Erosion on Range- and Forestland 17.10 Erosion and Sediment Control on Construction Sites 17.11 Wind Erosion: Importance and Factors Affecting It 17.12 Predicting and Controlling Wind Erosion 17.13 Land Capability Classification as a Guide to Conservation 17.14 Progress in Soil Conservation 17.15 Conclusion Study Questions References | 740
744
749
752
754
769
771
774
778
781
785
787
790
791 | | 18 Soi | s and Chemical Pollution 794 | | | | 18.1 Toxic Organic Chemicals 18.2 Kinds of Organic Contaminants 18.3 Behavior of Organic Chemicals in Soil 18.4 Effects of Pesticides on Soil Organisms 18.5 Remediation of Soils Contaminated with Organic Chemicals 18.6 Contamination with Toxic Inorganic Substances 18.7 Potential Hazards of Chemicals in Sewage Sludge | 795
798
800
806
808
817
820 | | | 18.8 | Reactions of Inorganic Contaminants in Soils | | 821 | |----------|-----------|--|-----|-----| | | 18.9 | Prevention and Elimination of Inorganic Chemical Contamination | | 824 | | | | Landfills | | 826 | | | | Radionuclides in Soil | | 831 | | | | Radon Gas from Soils | | 833 | | | 18.13 | Conclusion | | 836 | | | | Study Questions | | 836 | | | | References | | 837 | | 19 | GEOGRAPH | HIC SOILS INFORMATION 840 | | | | | | Soil Spatial Variability in the Field | | 840 | | | | Techniques and Tools for Mapping Soils | | 845 | | | | Modern Technology for Soil Investigations | | 847 | | | | Remote Sensing Tools for Soils Investigations | | 852 | | | | Air Photos | | 853 | | | | Satellite Imagery | | 857 | | | | Making a Soil Survey | | 858 | | | | Using Soil Surveys | | 861 | | | | Geographic Information Systems | | 864 | | | | GIS, GPS, and Site-Specific Agriculture | | 868 | | | 19.11 | Conclusion | | 871 | | | | Study Questions | | 871 | | | | References | | 872 | | 20 | PROSPECTS | S FOR GLOBAL SOIL QUALITY AS AFFECTED BY HUMAN ACTIVITIES | 873 | | | | | The Concepts of Soil Quality and Soil Health | | 874 | | | | Soil Resistance and Resilience | | 880 | | | | Soils and Global Ecosystem Services | | 882 | | | | Sustaining The Human Population | | 884 | | | | Intensified Agriculture—The Green Revolution | | 885 | | | | Effects of Intensified Agriculture on Soil Quality | | 887 | | | | Impacts of Vastly Increased Ratios of People to Land | | 890 | | | | Sustainable Agriculture in Developed Countries | | 894 | | | | Organic Farming Systems | | 898 | | | 20.10 | Sustainable Agricultural Systems for Resource–Poor Farmers | | 901 | | | 20.11 | Improving Soil Quality in Asia and Latin America | | 910 | | | 20.12 | Conclusion | | 912 | | | | Study Questions | | 913 | | | | References | | 914 | | ,
Дрр | ENDIY A W | ORID RESOURCE RASE: CANADIAN | | | AND AUSTRALIAN SOIL CLASSIFICATION SYSTEMS 917 APPENDIX B SI UNITS, CONVERSION FACTORS, PERIODIC TABLE OF THE ELEMENTS, AND PLANT NAMES 921 GLOSSARY OF SOIL SCIENCE TERMS 926 INDEX 953 NOTE: Every effort has been made to provide accurate and current Internet information in this book. However, the Internet and information posted on it are constantly changing, and it is inevitable that some of the Internet addresses listed in this textbook will change.