David Coley

Energy_{and} Climate Change

Contents

	Preface	xiii
1	Introduction	1
P#	ART I ENERGY: CONCEPTS, HISTORY AND PROBLEMS	7
2	Energy	9
	2.1 What is energy?	9
	2.2 Units	11
	2.3 Power	13
	2.4 Energy in various disguises	14
	2.5 Energy quality and exergy	21
	2.6 Student exercises	25
3	The planet's energy balance	27
	3.1 The sun	27
	3.2 The earth	31
	3.3 Comparisons	41
	3.4 Student exercises	43
4	A history of humankind's use of energy	45
	4.1 Energy and society	46
	4.2 Wealth, urbanization and conflict	66
	4.3 Our current level of energy use	69
	4.4 Student exercises	74
5	Sustainability, climate change and the global environment	77
	5.1 Sustainability	77
	5.2 Climate change	79
	5.3 Other concerns	114
	5.4 Debating climate change and answering the sceptics	127
	5.5 The atmosphere	134
	5.6 Student exercises	139

viii CONTENTS

6	Economics and the environment	143
	6.1 Key concepts	143
	6.2 Environmental economics	154
	6.3 Student exercises	158
7	Combustion, inescapable inefficiencies and the generation	
	of electricity	159
	7.1 Combustion	159
	7.2 Calorific values	161
	7.3 Inescapable inefficiencies	161
	7.4 Heat pumps	165
	7.5 Double Carnot efficiencies	168
	7.6 The generation of electricity from heat	168
	7.7 Student exercises	177
PAF	RT II UNSUSTAINABLE ENERGY TECHNOLOGIES	179
		400
8	Coal	183
	8.1 History	184
	8.2 Extraction	185
	8.3 The combustion of coal	186
	8.4 Technologies for use	187
	8.5 Example applications	190
	8.6 Global resource	193
	8.7 Student exercises	196
9	Oil	199
	9.1 Extraction	200
	9.2 The combustion of oil	204
	9.3 Technologies for use	205
	9.4 Example application: the motor car	205
	9.5 Global resource	208
	9.6 Student exercises	210
10	Gas	211
	10.1 Extraction	211
	10.2 The combustion of gas	214
	10.3 Technologies for use	214
	10.4 Example application: the domestic boiler	215
	10.5 Global resource	216
	10.6 Student exercises	220
11	Non-conventional hydrocarbons	221
	11.1 Oil shale	221
	11.2 Tar sands	222

CONTENTS	ix

	11.3 Methane hydrate	223
	11.4 Student exercises	226
12	Nuclear power	227
	12.1 Physical basis	227
	12.2 Technologies for use	229
	12.3 Environmental concerns	239
	12.4 Waste	244
	12.5 World resource	245
	12.6 Example applications	248
	12.7 Is nuclear power the solution to global warming?	254
	12.8 Student exercises	257
13	Hydropower	259
	13.1 History	259
	13.2 Technologies for use	261
	13.3 Example application: Itaipu hydroelectric station	268
	13.4 Environmental impacts	271
	13.5 Pumped storage	273
	13.6 Global resource	273
	13.7 Student exercises	275
14	Transport and air quality	277
	14.1 Present day problems	278
	14.2 Air quality and health	282
	14.3 Example application: air quality in Exeter, UK	290
	14.4 Student exercises	290
15	Figures and philosophy: an analysis of a nation's energy supply	291
	15.1 The economy	293
	15.2 Production	294
	15.3 Consumption	294
	15.4 Oil and gas production	296
	15.5 Prices	298
	15.6 Fuel poverty	302
	15.7 Carbon emissions	303
	15.8 Sustainable energy in the UK: the current state of play	303
	15.9 Student exercises	307
PAI	RT III CLIMATE CHANGE: PREDICTIONS AND POLICIES	309
16	Future world energy use and carbon emissions	311
	16.1 The world's future use of energy	312
	16.2 Student exercises	322

x CONTENTS

17	The impact of a warmer world	323
	17.1 Climate models	324
	17.2 Natural variability and model reliability	326
	17.3 Future climate change	331
	17.4 Impacts	331
	17.5 Costing the impact	343
	17.6 Student exercises	343
18	Politics in the greenhouse: contracting and converging	345
	18.1 Climate negotiations	348
	18.2 Another approach	355
	18.3 Bringing it all together	358
	18.4 Conclusion	364
	18.5 Student exercises	364
	RT THE CHOTATHER PER ENERGY TECHNICI OCTEC	265
PAF	RT IV SUSTAINABLE ENERGY TECHNOLOGIES	365
	IV.1 Current world sustainable energy provision	367
19	Energy efficiency	371
	19.1 Cogeneration	372
	19.2 Reducing energy losses	374
	19.3 Energy recovery	383
	19.4 Energy efficiency in buildings	386
	19.5 Student exercises	394
20	Solar power	397
	20.1 Passive solar heating	398
	20.2 Heat pumps	405
	20.3 Solar water heating	409
	20.4 Low temperature solar water heating	409
	20.5 Example application: solar water heating, Phoenix Federal Correction	
	Institution, USA	416
	20.6 High temperature solar power	417
	20.7 Low temperature water-based thermal energy conversion	422
	20.8 OECD resource	423
	20.9 Student exercises	424
21	Photovoltaics	427
	21.1 History	427
	21.2 Basic principles	427
	21.3 Technologies for use	431
	21.4 Electrical characteristics	433
	21.5 Roof-top PV	436
	21.6 Example application: Doxford Solar Office, UK	439
	21.7 OECD resource	440
	21.8 Student exercises	440

CONTENTS	хi	

22	Wind power	441
	22.1 History	444
	22.2 Technologies for use	447
	22.3 The modern horizontal axis wind turbine	459
	22.4 Environmental impacts	462
	22.5 OECD resource	467
	22.6 Example application: Harøy Island Wind Farm, Sandøy, Norway	468
	22.7 Student exercises	469
23	Wave power	471
	23.1 Wave characteristics	472
	23.2 Technologies for use	474
	23.3 Example application: the Pelamis P-750 wave energy converter	478
	23.4 Student exercises	478
24	Tidal and small-scale hydropower	481
	24.1 Tides	482
	24.2 Small-scale hydropower	490
	24.3 OECD resource	496
	24.4 Student exercises	498
25	Biomass	499
	25.1 History	499
	25.2 Basic principles	500
	25.3 Technologies for use	502
	25.4 Example application: anaerobic digester, Walford College Farm, UK	510
	25.5 Global resource	511
	25.6 OECD resource	513
	25.7 Student exercises	514
26	Geothermal	515
	26.1 Background	515
	26.2 History	519
	26.3 Resource and technology	520
	26.4 Technologies for use	523
	26.5 Environmental problems	525
	26.6 World resource	525
	26.7 OECD resource	526
	26.8 Example application: Hacchobaru geothermal power station,	
	Kokonoe-machi, Japan	526
	26.9 Student exercises	528
27	Fast breeders and fusion	529
	27.1 Fast breeder reactors	529
	27.2 Fusion	532
	27.3 Example application: JET Torus, Culham, UK	535
	27.4 Student exercises	537

xii CONTENTS

28	Atternative	transport futures and the nydrogen economy	539
	28.1 Improving	energy efficiency	541
	28.2 Alternativ	e transport fuels and engines	544
	28.3 Hydrogen	powered vehicles and the hydrogen economy	550
	28.4 Fuel cells		552
		pplication: the greening of natural gas	558
	28.6 Student ex	xercises	559
29	Carbon sequ	estration and climate engineering	561
	29.1 Capture te	echnologies	562
	29.2 Storage te		563
		tion of solar radiation	567
		pplication: Statoil, Sleipner West gas field, North Sea	568
	29.5 Student ex	xercises	569
30	A sustainabl	le, low carbon future?	571
	30.1 Methodolo	ogy and assumptions	572
	30.2 Results		572
	30.3 Worldwide		578
	30.4 Conclusion		581
	30.5 What can		581
	30.6 Student ex	kercises	582
	References		583
	Appendix 1	National energy data	593
	Appendix 2	Answers to in-text problems	613
	Appendix 3	Bibliography and suggested reading	641
	Appendix 4	Useful data	643
	Index		649