NAVIER-STOKES EQUATIONS AND TURBULENCE

C. FOIAS
O. MANLEY
R. ROSA
R. TEMAM

Contents

Preface Acknowledgments	<i>page</i> ix xiv
Chapter I Introduction and Overview of Turbulence	1
Introduction	1
1. Viscous Fluids. The Navier-Stokes Equations	1
2. Turbulence: Where the Interests of Engineers and Mathematicians	
Overlap	5
3. Elements of the Theories of Turbulence of Kolmogorov and	
Kraichnan	9
4. Function Spaces, Functional Inequalities, and Dimensional Analysis	14
Chapter II Elements of the Mathematical Theory of the	
Navier-Stokes Equations	25
Introduction	25
1. Energy and Enstrophy	27
2. Boundary Value Problems	29
3. Helmholtz-Leray Decomposition of Vector Fields	36
4. Weak Formulation of the Navier-Stokes Equations	39
5. Function Spaces	41
6. The Stokes Operator	49
7. Existence and Uniqueness of Solutions: The Main Results	55
8. Analyticity in Time	62
9. Gevrey Class Regularity and the Decay of the Fourier Coefficients	67
10. Function Spaces for the Whole-Space Case	75
11. The No-Slip Case with Moving Boundaries	77
12. Dissipation Rate of Flows	80
13. Nondimensional Estimates and the Grashof Number	87
Appendix A. Mathematical Complements	90
Appendix B. Proofs of Technical Results in Chapter II	102

Chapter III Finite Dimensionality of Flows	115
Introduction	115
1. Determining Modes	123
2. Determining Nodes	131
3. Attractors and Their Fractal Dimension	137
4. Approximate Inertial Manifolds	150
Appendix A. Proofs of Technical Results in Chapter III	156
Chapter IV Stationary Statistical Solutions of the Navier-Stokes	
Equations, Time Averages, and Attractors	169
Introduction	169
1. Mathematical Framework, Definition of Stationary Statistical	
Solutions, and Banach Generalized Limits	172
2. Invariant Measures and Stationary Statistical Solutions in	
Dimension 2	183
3. Stationary Statistical Solutions in Dimension 3	189
4. Attractors and Stationary Statistical Solutions	194
5. Average Transfer of Energy and the Cascades in Turbulent Flows	198
Appendix A. New Concepts and Results Used in Chapter IV	218
Appendix B. Proofs of Technical Results in Chapter IV	227
Appendix C. A Mathematical Complement: The Accretivity Property	
in Dimension 3	244
Chapter V Time-Dependent Statistical Solutions of the	
Navier-Stokes Equations and Fully Developed	
Turbulence	255
Introduction	255
1. Time-Dependent Statistical Solutions on Bounded Domains	262
2. Homogeneous Statistical Solutions	271
3. Reynolds Equation for the Average Flow	280
4. Self-Similar Homogeneous Statistical Solutions	283
5. Relation with and Application to the Conventional Theory of	
Turbulence	295
6. Some Concluding Remarks	310
Appendix A. Proofs of Technical Results in Chapter V	312
References	33
Index	343