

Contents

PREFACE T	TO THE DOVER EDITION	vii
PREFACE TO THE ORIGINAL EDITION		vii
Chapter	1, Introduction and Orientation	
1.1	Prerequisites	1
1.2	Functions	1
1.3	The Extended Real Numbers	3
1.4	Bounds, Maxima, and Minima	4
1.5	Limits	5
1.6	Continuity and Semi-Continuity	8
1.7	Derivatives	9
1.8	Piecewise Continuous Functions	11
1.9	Continuous Piecewise Smooth Functions	12
1.10	Metric Spaces	13
1.11	Functions Defined Implicitly	15
1.12	Ordinary Differential Equations	16
	The Riemann Integral	18
1.14	What Is the Calculus of Variations?	21
Chapter	2, Necessary Conditions for an Extremum	
2.1	Introduction	26
2.2	The Fixed-Endpoint Problem in the Plane	27
	Minima of Ordinary Point-Functions	28
	Different Kinds of Minima of $J(y)$	29
	The Lemma of du Bois Reymond	31
2.6	The Euler Necessary Condition	32
2.7	Examples	36
2.8	The Weierstrass Necessary Condition	39
2.9	The Erdmann Corner Conditions	42
2.10	The Figurative	44
	The Legendre Necessary Condition	45
	The Jacobi Necessary Condition	46
2.13	Other Forms of the Jacobi Condition	48
2.14	Concluding Remarks	51
Chapter	3, Sufficient Conditions for an Extremum	
3.1	Introduction	53
3.2	Fields	55
3.3	The Hilbert Integral	57

3.4 The Fundamental Sufficiency Theorem	58
3.5 Examples	59
3.6 Sufficient Combinations of Conditions	62
3.7 Problems for Which Condition III' Fails	64
3.8 Sufficient Conditions When There Is a Corner	69
3.9 Extensions, Other Methods	71
3.10 Convex Sets and Convex Point-Functions	72
3.11 Convexity of Integrals and Global Minima	77
3.12 A Naive Expansion Method	80
Chapter 4, Variations and Hamilton's Principle	
4.1 Introduction	85
4.2 The Operator δ	86
4.3 Formal Derivation of the Euler Equation	88
4.4 The Second Variation	90
4.5 Concluding Remarks on the δ-Calculus	92
4.6 Introduction to Hamilton's Principle	93
4.7 Examples	95
4.8 Side-Conditions and New Coordinates	97
4.9 The Generalized Hamilton Principle	101
4.10 Applications to Electric Networks	103
4.11 Concluding Remarks	104
Chapter 5, The Nonparametric Problem of Bolza	
5.1 Introduction	106
5.2 Examples	107
5.3 Formulation of the Problem of Bolza	108
5.4 Alternative Forms of a Problem	110
5.5 Constrained Extrema of Point-Functions	111
5.6 Different Kinds of Extrema	113
5.7 The Multiplier Rule	115
5.8 Normality	120
5.9 Application of the Multiplier Rule to Examples	121
5.10 Further Necessary Conditions, Sufficient	
Conditions for Local Extrema	129
5.11 Sufficient Conditions for Global Extrema	129
5.12 Analysis of a Problem from Rocket Propulsion	134
5.13 Concluding Remarks	138
Chapter 6, Parametric Problems	
6.1 Introduction	140
6.2 What Is a Curve?	141
6.3 Fréchet Distance between Mappings	142
6.4 Fréchet Distance between Curves	146
6.5. Piecewise Smooth Curves	147

6.6	Parametric Integrals and Problems	148
	Homogeneity of Parametric Integrands	150
6.8	Consequences of the Homogeneity of F	152
	The Classical Fixed-Endpoint Parametric Problem	155
	The Classical Parametric Problem of Bolza	156
6.11	The Euler Necessary Condition	156
	Necessary Conditions of Weierstrass and Legendre	159
	Related Parametric and Nonparametric Problems	
	of Like Dimensionality	163
6.14	An Addendum to the Euler Condition for a	
	Nonparametric Integral	165
6.15	Related Parametric and Nonparametric Problems	
	of Different Dimensionality	166
6.16	Concluding Remarks	167
00	5000,4400	20.
Chapter	7, Direct Methods	
•		1.00
	Introduction	168
	Global Extrema of Real-Valued Functions	169
	Length of a Mapping	170
	Lower Semi-Continuity of Length	171
	Length of a Curve	173
	The Representation in Terms of Length	173
	The Hilbert Compactness Theorem	177
	The Ascoli–Arzelà Theorem	181
	The Helly Compactness Theorem	183
	The Weierstrass Integral	187
	Existence Theorems for Parametric Problems	192
7.12	Nonparametric Weierstrass Integrals	200
Chapter	8, Measure, Integrals, and Derivatives	
- 8.1	Introduction	202
	Linear Lebesgue Outer Measure	203
	Lebesgue Measurability and Measure	204
	Measurable Functions	210
	The Lebesgue Integral	210
	Convergence Theorems	220
	Other Properties of Integrals	224
	Functions of Bounded Variation	227
	The Vitali Covering Theorem	231
	Derivatives of Functions of Bounded Variation	234
	Indefinite Integrals	234
		231
-	9, Variational Theory in Terms of	
Lebesgu	ue Integrals	
9.1	Introduction	245

9.2	Variational Integrals of the Lebesgue Type	246
9.3	The Lebesgue Length-Integral	251
	Convergence in the Mean and in Length	255
9.5	Integrability of Parametric and Nonparametric	
	Integrands; Weierstrass Integrals	256
9.6	Normed Linear Spaces	259
9.7	The L_p -Spaces	261
9.8	Separability of the Space $L_p([a,b])$	265
	Linear Functionals and Weak Convergence	270
	The Weak Compactness Theorem	274
	Applications	280
	Concluding Remarks	285
Chapter	10, A Miscellany of Nonclassical Problems	
	Introduction	286
	Problems Motivated by Rocket Propulsion	287
	A Least-Squares Estimation	294
10.4	Design of a Solenoid	296
	Conflict Analysis, Games	301
	Problems with Stochastic Ingredients	303
10.7	Problems with Lags	306
10.8	Concluding Remarks	310
Chapter	11, Hamilton-Jacobi Theory	
11.1	Introduction	311
11.2	The Canonical Form of the Euler Condition	312
11.3	Transversals to a Field	314
11.4	The Formalism of Dynamic Programming	316
11.5	Examples	318
	The Pontryagin Maximum Principle	321
	Concluding Remarks	323
Chapter	12, Conclusion and Envoy	
12.1	Comments and Suggestions	324
12.2	Generalized Curves	325
12.3	The Calculus of Variations in the Large	326
12.4	The Theory of Area	327
12.5	Multiple Integral Problems	328
	Trends	329
BIBLIOGR.	АРНҮ	331
SUPPLEME	NTARY BIBLIOGRAPHY	340
INDEX		341