

Gauge theory of elementary particle physics

Ta-Pei Cheng and Ling-Fong Li

Contents

Unmarked sections are the basic part of the book; those labelled with an asterisk contain details that may be omitted upon a first reading. Sections and chapters marked with a dagger are elementary introductions to advanced topics that are somewhat outside the book's main line of development.

PART I

Basics in field quantization

1.1 1.2 1.3*	Review of canonical quantization formalism Introduction to path integral formalism Fermion field quantization	4 11 22
2	Introduction to renormalization theory	
2.1	Conventional renormalization in $\lambda \phi^4$ theory	31
2.2	BPH renormalization in $\lambda \phi^4$ theory	39
2.3	Regularization schemes	45
2.4	Power counting and renormalizability	56
3	Renormalization group	
3.1	Momentum subtraction schemes and the Callan-Symanzik equation	67
3.2*	The minimal subtraction scheme and its renormalization-group	
	equation	77
3.3	Effective coupling constants	81
4	Group theory and the quark model	
4.1	Elements of group theory	86
4.2	SU(2) and SU(3)	90
4.3	The tensor method in $SU(n)$	102
4.4	The quark model	113
5	Chiral symmetry of the strong interaction	
5.1	Global symmetries in field theory and current commutators	120
5.2*	Symmetry currents as physical currents	134
5.3	Spontaneous breaking of global symmetry, the Goldstone theorem	14
5.4*	PCAC and soft pion theorems	151
5.5*	Pattern of chiral symmetry breaking	160

6	Renormalization and symmetry		
6.1*	The vector-current Ward identity and renormalization	169	
6.2*	Axial-vector-current Ward identity anomaly and $\pi^0 \rightarrow 2\gamma$	₹73	
6.3+	Renormalization in theories with spontaneous symmetry breaking	182	
6.41	The effective potential and radiatively induced spontaneous symmetry		
	breakdown	189	
7	The Parton model and scaling		
7.1	The parton model of deep inelastic lepton-hadron scattering	199	
7.2	Sum rules and applications of the quark-parton model	208	
7.3	Free-field light-cone singularities and Bjorken scaling	218	
	PART II		
8	Gauge symmetries		
8.1	Local symmetries in field theory	229	
8.2*	Gauge invariance and geometry	235	
8.3	Spontaneous breaking of gauge symmetry, the Higgs phenomenon	240	
9	Quantum gauge theories		
9.1	Path-integral quantization of gauge theories	248	
9.2	Feynman rules in covariant gauges	257	
9.3*	The Slavnov-Taylor identities	267	
10	Quantum chromodynamics	- 0 -	
10.1*	The discovery of asymptotic freedom	280	
10.2	The QCD Lagrangian and the symmetries of the strong interaction	291	
E.DJ	Renormalization group analysis of scaling and scaling violation	295	
10.4*	The parton model and perturbative QCD	311	
10.5†	Lattice gauge theory and colour confinement	322	
11	Standard electroweak theory 1: basia structure		
11.1	Weak interactions before gauge theories	336	
11.2	Construction of the standard $SU(2) \times U(1)$ theory	339	
11.3	Fermion family replication	355	
12	Standard electroweak theory II: phenomenological implications		
12.1	Flavour-conserving neutral-current processes	364	
12.2	Weak mixing angles, the GIM mechanism, and CP violation	371	
12.3	The W and Z intermediate vector bosons	386	
12.4	The Higgs particle	394	
13	Selected topics in quantum flavourdynamics		
13.14	Dynamical symmetry breaking and technicolour models	401	
23.2*	Neutrino masses, mixings and oscillations	409	
13.3*	$\mu \to e\gamma$, An example of R_{ξ} gauge loop calculations	420	

14	Grand unification	
14.1	Introduction to the SU(5) model	428
14.2	Spontaneous symmetry breaking and gauge hierarchy	434
14.3	Coupling constant unification	437
14.4	Proton decay and baryon asymmetry in the universe	442
14.5	Fermion masses and mixing angles in the minimal SU(5) model	447
15 †	Magnetic monopoles	
15.1	Dirac's theory of magnetic poles	453
15.2	Solitons in field theory	460
15.3	The 't Hooft-Polyakov monopole	466
16†	Instantons	
16.1	The topology of gauge transformations	476
16.2	The instanton and vacuum tunnelling	482
16.3	Instantons and the U(1) problem	487
Appendix A Notations and conventions		494
Арре	Appendix B Feynman rules	
Bibliography References		513 517