GENETICS

ANALYSIS OF GENES AND GENOMES

SEVENTH EDITION

DANIEL L. HARTL AND ELIZABETH W. JONES

CONTENTS

Preface xv

Acknowledgements xxiii

About the Authors xxvi

In Memoriam xxvii

About the Cover xxviii

Genes, Genomes, and Genetic Analysis

1.1 DNA: The Genetic Material

Experimental Proof of the Genetic Function of DNA Genetic Role of DNA in Bacteriophage

1.2 DNA Structure and Replication

An Overview of DNA Replication

1.3 Genes and Proteins

Inborn Errors of Metabolism as a Cause of Hereditary Disease Mutant Genes and Defective Proteins

1.4 Genetic Analysis

Complementation Test for Mutations in the Same Gene

Analysis of Complementation Data Other Applications of Genetic Analysis

1.5 Gene Expression: The Central Dogma

Transcription Translation The Genetic Code

1.6 Mutation

1.7 Genes and Environment

1.8 The Molecular Unity of Life

Prokaryotes and Eukaryotes
Evolutionary Relationships Among
Eukaryotes
Genomes and Proteomes

DNA Structure and Genetic Variation

2.1 Genetic Differences Among Individuals

DNA Markers as Landmarks in Chromosomes

2.2 The Molecular Structure of DNA

Polynucleotide Chains
Base Pairing and Base Stacking
Antiparallel Strands
DNA Structure as Related to Function

2.3 The Separation and Identification of Genomic DNA Fragments

Restriction Enzymes and Site-Specific DNA Cleavage Gel Electrophoresis Nucleic Acid Hybridization The Southern Blot

2.4 Selective Replication of Genomic DNA Fragments

Constraints on DNA Replication: Primers and 5'-to-3' Strand Elongation
The Polymerase Chain Reaction

2.5 The Terminology of Genetic Analysis

2.6 Types of DNA Markers Present in Genomic DNA

Single-Nucleotide Polymorphisms (SNPs)
Restriction Fragment Length
Polymorphisms (RFLPs)
Tandem Repeat Polymorphisms
Copy-Number Polymorphisms (CNPs)

2.7 Applications of DNA Markers

Genetic Markers, Genetic Mapping, and "Disease Genes"
Other Uses for DNA Markers

Transmission Genetics: The Principle of Segregation

3.1 Morphological and Molecular Phenotypes

3.2 Segregation of a Single Gene

Phenotypic Ratios in the F₂ Generation The Principle of Segregation Verification of Segregation The Testcross and the Backcross

3.3 Segregation of Two or More Genes

The Principle of Independent Assortment The Testcross with Unlinked Genes Three or More Genes

3.4 Probability in Genetic Analysis

Elementary Outcomes and Events Probability of the Union of Events Probability of the Intersection of Events Conditional Probability Bayes' Theorem

3.5 Human Pedigree Analysis

Characteristics of Dominant and Recessive Inheritance

Most Human Genetic Variation is Not "Bad"

Molecular Markers in Human Pedigrees

3.6 Incomplete Dominance and Epistasis

Multiple Alleles Human ABO Blood Groups Epistasis

Chromosomes and Sex-Chromosome Inheritance

4.1 The Stability of Chromosome Complements

4.2 Mitosis

4.3 Meiosis

The First Meiotic Division: Reduction The Second Meiotic Division: Equation

4.4 Sex-Chromosome Inheritance

Chromosomal Determination of Sex X-Linked Inheritance Pedigree Characteristics of Human Xlinked Inheritance Heterogametic Females Nondisjunction as Proof of the Chromosome Theory of Heredity Sex Determination in *Drosophila*

4.5 Probability in the Prediction of Progeny Distributions

Using the Binomial Distribution in Genetics

Meaning of the Binomial Coefficient

4.6 Testing Goodness of Fit to a Genetic Hypothesis

The Chi-Square Method Are Mendel's Data Too Good to Be True?

Genetic Linkage and Chromosome Mapping

5.1 Linkage and Recombination of Genes in a Chromosome

Coupling versus Repulsion of Syntenic Alleles

The Chi-Square Test for Linkage Each Pair of Linked Genes Has a Characteristic Frequency of

Recombination
Recombination in Females versus Males

5.2 Genetic Mapping

Map Distance and Frequency of Recombination Crossing-over Recombination Between Genes Results from a Physical Exchange Between Chromosomes

Crossing-over Takes Place at the Four-Strand Stage of Meiosis Multiple Crossovers

5.3 Genetic Mapping in a Three-Point Testcross

Distance

Chromosome Interference in Double Crossovers Genetic Mapping Functions Genetic Map Distance and Physical

- **5.4 Genetic Mapping in Human Pedigrees**Maximum Likelihood and Lod Scores
- 5.5 Mapping by Tetrad Analysis
 Analysis of Unordered Tetrads
 Genetic Mapping with Unordered Tetrads
 Analysis of Ordered Tetrads

5.6 Special Features of Recombination Recombination within Genes Mitotic Recombination

Molecular Biology of DNA Replication and Recombination

- 6.1 Problems of Initiation, Elongation, and Incorporation Error
- 6.2 Semiconservative Replication of Double-Stranded DNA

The Meselson–Stahl Experiment
Semiconservative Replication of DNA in
Chromosomes
Theta Replication of Circular DNA
Molecules
Rolling-Circle Replication
Multiple Origins and Bidirectional
Replication in Eukaryotes

6.3 Unwinding, Stabilization, and Stress Relief

- 6.4 Initiation by a Primosome Complex
- 6.5 Chain Elongation and Proofreading
- 6.6 Discontinuous Replication of the Lagging Strand

Fragments in the Replication Fork The Joining of Precursor Fragments

- 6.7 Terminator Sequencing of DNA Sanger Sequencing Massively Parallel Sequencing
- 6.8 Molecular Mechanisms of Recombination

Gene Conversion and Mismatch Repair Double-Strand Break and Repair Model

Molecular Organization of Chromosomes

- 7.1 Genome Size and Evolutionary Complexity: The C-Value Paradox
- **7.2 The Supercoiling of DNA** Topoisomerase Enzymes
- 7.3 The Structure of Bacterial Chromosomes
- 7.4 The Structure of Eukaryotic Chromosomes

The Nucleosome: The Structural Unit of Chromatin The Nucleosome Core Particle Chromosome Territories in the Nucleus Chromosome Condensation

7.5 Polytene Chromosomes

7.6 Repetitive Nucleotide Sequences in Eukaryotic Genomes

Kinetics of DNA Renaturation Analysis of Genome Size and Repetitive Sequences by Renaturation Kinetics

7.7 Unique and Repetitive Sequences in Eukaryotic Genomes

> Unique Sequences Highly Repetitive Sequences Middle-Repetitive Sequences

- 7.8 Molecular Structure of the Centromere
- 7.9 Molecular Structure of the Telomere

Human Karyotypes and Chromosome Behavior

8.1 The Human Karyotype

Standard Karyotypes
The Centromere and Chromosome
Stability
Dosage Compensation of X-Linked Genes
The Calico Cat
Pseudoautosomal Inheritance

Active Genes in the "Inactive"
X chromosome
Gene content and Evolution of the
Y Chromosome
Tracing Human History Through the
Y Chromosome

8.2 Chromosome Abnormalities in Human Pregnancies

Down Syndrome and Other Viable
Trisomics
Trisomic Segregation
Sex-Chromosome Abnormalities
Environmental Effects on Nondisjunction

8.3 Chromosomal Deletions and Duplications

Deletions
Deletion Mapping
Duplications
Unequal Crossing-over in Red–Green
Color Blindness

8.4 Genetics of Chromosomal Inversions

Paracentric Inversion (Not Including the Centromere) Pericentric Inversion (Including the Centromere)

8.5 Chromosomal Translocations

Reciprocal Translocations
Genetic Mapping of a Translocation
Breakpoint
Robertsonian Translocations
Translocations and Trisomy 21
Translocation Complexes in *Oenothera*

8.6 Genomic Position Effects on Gene Expression

8.7 Polyploidy in Plant Evolution

Sexual Versus Asexual Polyploidization Autopolyploids and Allopolyploids Monoploid Organisms

8.8 Genome Evolution in the Grass Family (Gramineae)

Genetics of Bacteria and Their Viruses

9.1 Mobile DNA

Plasmids

The F Plasmid: A Conjugative Plasmid
Insertion Sequences and Transposons
Mobilization of Nonconjugative Plasmids
Integrons and Antibiotic-Resistance
Cassettes
Multiple-Antibiotic-Resistant Bacteria

Multiple-Antibiotic-Resistant Bacteria Pathogenicity Islands

9.2 Bacterial Genetics

Mutant Phenotypes Mechanisms of Genetic Exchange

9.3 DNA-Mediated Transformation

9.4 Conjugation

Cointegrate Formation and Hfr Cells

Time-of-Entry Mapping F' Plasmids

9.5 Transduction

The Phage Lytic Cycle Generalized Transduction

9.6 Bacteriophage Genetics

Plaque Formation and Phage Mutants Genetic Recombination in the Lytic Cycle Genetic and Physical Maps of Phage T4 Fine Structure of the *rII* Gene in Bacteriophage T4

9.7 Lysogeny and Specialized Transduction

Site-Specific Recombination and Lysogeny Specialized Transduction

Wolecular Biology of Gene Expression

10.1 Amino Acids, Polypeptides, and Proteins

10.2 Colinearity Between Coding Sequences and Polypeptides

10.3 Transcription

Overview of RNA Synthesis
Types of RNA Polymerase
Promoter Recognition
Mechanism of Transcription
Genetic Evidence for Promoters and
Terminators

10.4 Messenger RNA

10.5 RNA Processing in Eukaryotes

5' Capping and 3' Polyadenylation
Splicing of Intervening Sequences
Characteristics of Human Transcripts
Coupling of Transcription and RNA
Processing
Mechanism of RNA Splicing
Effects of Intron Mutations

Exon Shuffle in the Origin of New Genes

10.6 Translation

Nonsense-Mediated Decay
Initiation by mRNA Scanning

Elongation Release Protein Folding and Chaperones

10.7 Complex Translation Units

Polysomes Polycistronic mRNA

10.8 The Standard Genetic Code

Genetic Evidence for a Triplet Code

How the Code Was Cracked Features of the Standard Code Transfer RNA and Aminoacyl-tRNA Synthetase Enzymes Redundancy and Wobble Nonsense Suppression

Molecular Mechanisms of Gene Regulation

11.1 Transcriptional Regulation in **Prokaryotes**

Inducible and Repressible Systems of Negative Regulation Positive Regulation

11.2 The Operon System of Gene Regulation

Lac Mutants

Inducible and Constitutive Synthesis and Repression

The Repressor

The Operator Region

The Promoter Region

The Operon System of Transcriptional Regulation

Positive Regulation of the Lactose Operon Regulation of the Tryptophan Operon

11.3 Regulation Through Transcription Termination

Attenuation Riboswitches

11.4 Regulation in Bacteriophage Lambda

11.5 Transcriptional Regulation in Eukaryotes

Galactose Metabolism in Yeast Transcriptional Activator Proteins Transcriptional Enhancers and Transcriptional Silencers **Deletion Scanning**

The Eukaryotic Transcription Complex Chromatin-Remodeling Complexes Alternative Promoters

11.6 Epigenetic Mechanims of Transcriptional Regulation

Cytosine Methylation Methylation and Transcriptional Inactivation

Cosuppression Through Transcriptional Silencing

Genomic Imprinting in the Female and Male Germ Lines

11.7 Regulation Through RNA Processing and Decay

Alternative Splicing Messenger RNA Stability

11.8 RNA Interference

11.9 Translational Control

Small Regulatory RNAs Controlling Translation

11.10 Programmed DNA Rearrangements

Gene Amplification Antibody and T-Cell Receptor Variability Mating-Type Interconversion Transcriptional Control of Mating Type

Genomics, Proteomics, and Transgenics

12.1 Site-Specific DNA Cleavage and Cloning **Vectors**

Production of DNA Fragments with Defined Ends Recombinant DNA Molecules Plasmid, Lambda, and Cosmid Vectors

12.2 Cloning Strategies

Joining DNA Fragments

Insertion of a Particular DNA Molecule Into a Vector

The Use of Reverse Transcriptase: cDNA and RTPCR

12.3 Detection of Recombinant Molecules

Gene Inactivation in the Vector Molecule Cloning of Large DNA Fragments Screening for Particular Recombinants

12.4 Genomics and Proteomics

Genome Annotation Comparative Genomics Transcriptional Profiling Two-Hybrid Analysis of Protein Interactions

12.5 Transgenic Organisms

Germ-Line Transformation in Animals Genetic Engineering in Plants Transformation Rescue

Site-Directed Mutagenesis and Knockout Mutations

12.6 Some Applications of Genetic Engineering

Giant Salmon with Engineered Growth Hormone Nutritionally Engineered Rice Production of Useful Proteins Genetic Engineering with Animal Viruses

Genetic Control of Development

13.1 Genetic Determinants of Development

13.2 Early Embryonic Development in Animals

Autonomous Development and Intercellular Signaling Composition and Organization of Oocytes Early Development and Activation of the Zygotic Genome

13.3 Genetic Analysis of Development in the Nematode

Analysis of Cell Lineages Mutations Affecting Cell Lineages Programmed Cell Death Loss-of-Function and Gain-of-Function Epistasis in the Analysis of Developmental Switches

13.4 Genetic Control of Development in Drosophila

Maternal-Effect Genes and Zygotic Genes Genetic Basis of Pattern Formation in Early Development Coordinate Genes Gap Genes Pair-Rule Genes Segment-Polarity Genes Interactions in the Regulatory Hierarchy Metamorphosis of the Adult Fly Homeotic Genes HOX Genes in Evolution

13.5 Genetic Control of Development in **Higher Plants**

Flower Development in Arabidopsis Combinatorial Determination of the Floral **Organs**

Molecular Mechanisms of Mutation and DNA Repair

14.1 Types of Mutations

Germ-Line and Somatic Mutations **Conditional Mutations** Classification by Function

14.2 The Molecular Basis of Mutation

Nucleotide Substitutions

Missense Mutations: The Example of Sickle-Cell Anemia Insertions, Deletions, and Frameshift Mutations Dynamic Mutation of Trinucleotide Repeats Cytosine Methylation and Gene

Inactivation 14.3 Transposable Elements

Molecular Mechanisms of Transposition Transposable Elements as Agents of Mutation

Transposable Elements in the Human Genome

RIP: A Defense Against Transposons

14.4 Spontaneous Mutation

The Nonadaptive Nature of Mutation Estimation of Mutation Rates Hot Spots of Mutation

14.5 Mutagens

Depurination Oxidation Base-Analog Mutagens Chemical Agents That Modify DNA Intercalating Agents Ultraviolet Irradiation Ionizing Radiation Genetic Effects of the Chernobyl Nuclear Accident

14.6 Mechanisms of DNA Repair

Mismatch Repair Base Excision Repair AP Repair Nucleotide Excision Repair Photoreactivation DNA Damage Bypass The SOS Repair System

14.7 Reverse Mutations and Suppressor Mutations

Intragenic Suppression
Intergenic Suppression
The Ames Test for Mutagen/Carcinogen
Detection

Wolecular Genetics of the Cell Cycle and Cancer

15.1 The Cell Cycle

Key Events in the Cell Cycle Transcriptional Program of the Cell Cycle

15.2 Genetic Analysis of the Cell Cycle

Mutations Affecting Progression Through the Cell Cycle

15.3 Progression Through the Cell Cycle

Cyclins and Cyclin-Dependent Protein Kinases
Targets of the Cyclin-CDK Complexes
Triggers for the G_1/S and G_2/M Transitions
Protein Degradation Helps Regulate the

15.4 Checkpoints in the Cell Cycle

The DNA Damage Checkpoint
The Centrosome Duplication Checkpoint
The Spindle Assembly Checkpoint
The Spindle Position Checkpoint

15.5 Cancer Cells

Oncogenes and Proto-Oncogenes Tumor-Suppressor Genes

15.6 Hereditary Cancer Syndromes

Defects in Cell-Cycle Regulation and Checkpoints Defects in DNA Repair

15.7 Genetics of the Acute Leukemias

Mitochondrial DNA and Extranuclear Inheritance

16.1 Patterns of Extranuclear Inheritance

Mitochondrial Genetic Diseases Heteroplasmy Maternal Inheritance and Maternal Effects Tracing Population History Through Mitochondrial DNA

16.2 Organelle Heredity

Cell Cycle

RNA Editing
The Genetic Codes of Organelles

Leaf Variegation in Four-O'Clock Plants
Drug Resistance in *Chlamydomonas*Respiration-Defective Mitochondrial
Mutants
Cytoplasmic Male Sterility in Plants

16.3 The Evolutionary Origin of Organelles

16.4 Cytoplasmic Transmission of Symbionts

16.5 Maternal Effect in Snail Shell Coiling

Molecular Evolution and Population Genetics

17.1 Molecular Evolution

Gene Trees
Bootstrapping
Gene Trees and Species Trees
Rates of Protein Evolution
Rates of DNA Evolution
Origins of New Genes: Orthologs and
Paralogs

17.2 Population Genetics

Allele Frequencies and Genotype
Frequencies
Random Mating and the Hardy–Weinberg
Principle
Implications of the Hardy–Weinberg
Principle
A Test for Random Mating
Frequency of Heterozygous Genotypes

Multiple Alleles DNA Typing X-Linked Genes

17.3 Inbreeding

The Inbreeding Coefficient
Allelic Identity by Descent
Calculation of the Inbreeding Coefficient
from Pedigrees
Effects of Inbreeding

17.4 Genetics and Evolution

17.5 Mutation and Migration

Irreversible Mutation Reversible Mutation

17.6 Natural Selection

Selection in a Laboratory Experiment Selection in Diploid Organisms Components of Fitness Selection–Mutation Balance Heterozygote Superiority

17.7 Random Genetic Drift

17.8 Tracing Human History Through Mitochondrial DNA

The Genetic Basis of Complex Traits

18.1 Complex Traits

Continuous, Categorical, and Threshold Traits The Normal Distribution

18.2 Causes of Variation

Genotypic Variation
Environmental Variation
Genetics and Environment Combined
Genotype-by-Environment Interaction and
Association

18.3 Genetic Analysis of Complex Traits

The Number of Genes Affecting Complex Traits Broad-Sense Heritability Twin Studies

18.4 Artificial Selection

Narrow-Sense Heritability

Phenotypic Change with Individual Selection: A Prediction Equation Long-Term Artificial Selection Inbreeding Depression and Heterosis

18.5 Correlation Between Relatives

Covariance and Correlation The Geometrical Meaning of a Correlation Estimation of Narrow-Sense Heritability

18.6 Heritabilities of Threshold Traits

18.7 Identification of Genes Affecting Complex Traits

Linkage Analysis in the Genetic Mapping of Quantitative Trait Loci The Number and Nature of QTLs Candidate Genes for Complex Traits

Answers to Even-Numbered Problems 683
Further Readings 701
Word Roots 705
Concise Dictionary of Genetics 709
Index 735